Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Density gradient ultracentrifugation for colloidal nanostructures separation and investigation

Abstract:
Density gradient ultracentrifugation (DGUC), as an effective method for the purification of nanomaterials, has attracted tremendou attentions of researchers. A recent review was reported by Science Bulletin, entitled "Density gradient ultracentrifugation for colloidal nanostructures separation and investigation" by Xiaoming Sun and Liang Luo et al from Beijing University of Chemical Technology. The authors systemtatically introduce the classification, mechanism and applications of density gradient ultracentrifugation (DGUC) with various separation examples, demonstrating the versatility of such an efficient separation technique.

Density gradient ultracentrifugation for colloidal nanostructures separation and investigation

Beijing, China | Posted on June 5th, 2018

Monodispersed nanoparticles and their assemblies have been demonstrated great application potentials due to their unique optical, electrical, magnetic and catalytic properties. During the last two decades, as the rapid development of nanomaterials, great progress of the synthetic methods of various monodispersed nanoparticles including semiconductors, metals and oxides have been made, and many assemblies based on single component or multicomponents have also been fabricated and demonstrated their unique functions. However, the synthetic repeatbility of monodispersed nanomaterials always remains a main limit of large-scale fabrications and applications. Further, rational design and synthesis of doped nanostructures with complicated components or complex structures such as core/shell structures, assymmetric structures, have become new issues in chemistry and material science, mainly due to the uncertain repeatibility. On the contrary, the separation methods for nanomaterial remain far behind. Typical methods such as membrane filtration, electrophoresis and magnetic field, also have many restraints and limited separation effect, which hinder the practical applications of nanodevices in various fields.

Aiming to solve the above issues, the DGUC technique, which was used to sort marcomolecules in biological field, has recently been demonstrated as an efficient way of sorting colloidal nanoparticles by several groups including Hersam's group and Sun's group. The DGUC can realize the separation of nanoparticles according to their differences in chemistry, structure, size and/or morphology. The authors introduced the classification, mechanism, applicability and instructions of DGUC, and demonstrated the applications including separation, purification and ultraconcentration of nanoparticles by DGUC, verifying the versatility. They further developed a new method "lab in a tube", which is helpful to monitor and get deeper insights of synthetic mechanism, in situ surface reactions and assembly processes.

###

This work was supported by the National Natural Science Foundation of China (NSFC), the National Key Research and Development Project of China (2016YFF0204402), the Program for Changjiang Scholars and Innovative Research Team in the University (IRT1205).

####

For more information, please click here

Contacts:
SUN Xiaoming

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article: Pengsong Li, Anuj Kumar, Jun Ma, Yun Kuang, Liang Luo, Xiaoming Sun. Density gradient ultracentrifugation for colloidal nanostructures separation and investigation. Science Bulletin, 2018, 63(10): 645-662:

Related News Press

Chemistry

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project