Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > From Face Recognition to Phase Recognition: Neural Network Captures Atomic-Scale Rearrangements: Scientists use approach analogous to facial-recognition technology to track atomic-scale rearrangements relevant to phase changes, catalytic reactions, and more

Deciphering the changes in the 3D structure of iron (center) upon heating, from top, clockwise: The in situ x-ray absorption experiment generates an extended x-ray absorption fine structure (EXAFS) spectrum that is fed into a neural network to extract the radial distribution function, unique for each material and atomic arrangement.
Deciphering the changes in the 3D structure of iron (center) upon heating, from top, clockwise: The in situ x-ray absorption experiment generates an extended x-ray absorption fine structure (EXAFS) spectrum that is fed into a neural network to extract the radial distribution function, unique for each material and atomic arrangement.

Abstract:
If you want to understand how a material changes from one atomic-level configuration to another, it's not enough to capture snapshots of before-and-after structures. It'd be better to track details of the transition as it happens. Same goes for studying catalysts, materials that speed up chemical reactions by bringing key ingredients together; the crucial action is often triggered by subtle atomic-scale shifts at intermediate stages.

From Face Recognition to Phase Recognition: Neural Network Captures Atomic-Scale Rearrangements: Scientists use approach analogous to facial-recognition technology to track atomic-scale rearrangements relevant to phase changes, catalytic reactions, and more

Upton, NY | Posted on May 31st, 2018

"To understand the structure of these transitional states, we need tools to both measure and identify what happens during the transition," said Anatoly Frenkel, a physicist with a joint appointment at the U.S. Department of Energy's Brookhaven National Laboratory and Stony Brook University.

Frenkel and his collaborators have now developed such a "phase-recognition" tool—or more precisely, a way to extract "hidden" signatures of an unknown structure from measurements made by existing tools. In a paper just published in Physical Review Letters, they describe how they trained a neural network to recognize features in a material's x-ray absorption spectrum that are sensitive to the arrangement of atoms at a very fine scale. The method helped reveal details of the atomic-scale rearrangements iron undergoes during an important but poorly understood phase change.

"This network training is similar to how machine learning is used in facial-recognition technology," Frenkel explained. In that technology, computers analyze thousands of images of faces and learn to recognize key features, or descriptors, and the differences that tell individuals apart. "There is a correlation between some features of the data," Frenkel explained. "In the language of our x-ray data, the correlations exist between the intensity of different regions of the spectra that also have direct relevance to the underlying structure and the corresponding phase."

Network training

To get the neural network ready for "phase recognition"—that is, to be able to recognize the key spectral features—the scientists needed a training set of images.

Janis Timoshenko, a postdoctoral fellow working with Frenkel at Stony Brook and lead author on the paper, tackled that challenge. First, he used molecular dynamic simulations to create 3000 realistic structure models corresponding to different phases of iron and different degrees of disorder.

"In these models, we wanted to account for the dynamic effects, so we define the forces that act between different atoms and we allow the atoms to move around as influenced by these forces," Timoshenko said. Then, using well-established approaches, he used mathematical calculations to derive the x-ray absorption spectra that would be obtained from each of these 3000 structures.

"It's not a problem to simulate a spectrum," Timoshenko said, "it's a problem to understand them in the backwards direction—start with the spectrum to get to the structure—which is why we need the neural network!"

After using Timoshenko's modeled spectral data to train the network, the scientists put their method to the test using real spectral data collected as iron underwent the phase transition.

"There are not a lot of experimental methods to monitor this transition, which happens at quite high temperatures," Timoshenko said. "But our collaborators— Alexei Kuzmin, Juris Purans, Arturs Cintins, and Andris Anspoks from the Institute of Solid State Physics of the University of Latvia, my former institution—performed this really nice experiment at the ELETTRA synchrotron in Italy to collect x-ray absorption data on this phase transition for the first time."

The neural network was able to extract the relevant structural information from the x-ray absorption spectrum of iron—in particular, the radial distribution function, which is a measure of the separations between atoms and how likely the various separations are. This function, unique for any material, is the key that can unlock the hidden details of the structure, according to Frenkel. It allowed scientists to quantify changes in the density and coordination of iron atoms in the process of their transition from one atomic arrangement to another.

Additional applications

In addition to being useful for studying the dynamics of phase changes, this method could be used to monitor the arrangements of nanoparticles in catalysts and other materials, the scientists say.

"We know that nanoparticles in catalytic materials change their structure in reaction conditions. It's really important to understand the transitional structure—why it changes, and how that affects catalytic properties and processes," Timoshenko said.

Nanoparticles also often take on structures that lie somewhere between crystalline and amorphous, with structural variations between the surface and the bulk. This method should be able to tease apart those differences so scientists can assess their relevance for material performance.

The method would also be useful for studying heterogeneous materials (which are made from a combination of particles with different sizes and shapes) and isomers of the same particle (which contain the same number of atoms but differ in their arrangements).

"No technique can image positions of atoms in three dimensions with such precision to tell what's the difference between their shapes. But if we measure this radial distribution function, there is a chance to tell them apart—and address important questions about the role of heterogeneity in catalysis," Frenkel said.

Brookhaven Lab's role in this work was funded by the U.S. Department of Energy's Office of Science and by Laboratory Directed Research and Development funds.

####

About Brookhaven National Laboratory
Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov [ https://science.energy.gov/ ].

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

Follow @BrookhavenLab on Twitter [ http://twitter.com/BrookhavenLab ] or find us on Facebook [ http://www.facebook.com/BrookhavenLab/ ].

For more information, please click here

Contacts:
Karen McNulty Walsh

(631) 344-8350
or Peter Genzer

(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Scientific paper: "Neural Network Approach for Characterizing Structural Transformations by X-Ray Absorption Fine Structure Spectroscopy":

Scientists Use Machine Learning to Translate 'Hidden' Information that Reveals Chemistry in Action:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Imaging

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Chemistry

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project