Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > 'Spooky action at a distance': Researchers develop module for quantum repeater

Abstract:
Communication using quantum states offers ultimate security, because eavesdropping attempts perturb the signal and would therefore not remain undetected. For the same reason, though, long-distance transmission of that information is difficult. In classical telecommunication, the increasing attenuation of the signal is counteracted by measuring, amplifying and re-sending it in so-called repeater stations, but this turns out to be as detrimental to the quantum information as an eavesdropper.

'Spooky action at a distance': Researchers develop module for quantum repeater

Saarbrücken, Germany | Posted on May 23rd, 2018

Therefore, a different principle has to be used: the quantum repeater. Here, quantum entanglement is first established over short distance and then propagated to longer separations. Quantum entanglement between two particles means that their common state is precisely defined, although when one measures the individual states of the particles, the results are random and unpredictable. A possible realization is to entangle a single atom with a photon that it emits. This is what happens in the laboratories of Prof. Jürgen Eschner, employing single calcium atoms in an ion trap that are controlled by laser pulses. For the wavelength of 854 nanometers where atom-photon entanglement is created, however, no low-loss optical fibers for long-distance transmission exist; instead, one would like to transmit the photons in one of the so-called telecom bands (1300 - 1560 nanometers). The technology for converting the photons into this regime, the quantum frequency converter, has been developed by Prof. Christoph Becher and his research group .

Together, the two groups have now demonstrated that after quantum frequency conversion, the telecom photon is still entangled with the atom that emitted the original photon, and that the high quality of the entanglement is maintained. One of the fascinating aspects of the work is that the entangled quantum state of the two microscopic particles (a single atom and a single telecom photon) extends over several floors of the physics building of the university. "This paves the way for entanglement over 20 kilometers and more", comments Matthias Bock, PhD student in quantum technologies and first author of the study. The results are an important step towards integrating quantum technologies into conventional telecommunications; for their research towards this goal, the two groups at Saarland University are funded by the German Ministry for Education and Research, BMBF.

###

Illustration of quantum entanglement:

The state of an individual quantum bit (an atom with two energy states of its electron, or a photon with two directions of its polarization) may be visualized as a point on the surface of a sphere. Measurement of that state provides an unpredictable result anywhere on the surface. The other qubit that is entangled with the first one will, however, always be found in the opposite point on the sphere. This correlation may also exist over large distances. Einstein called this phenomenon "spooky action at a distance"; it belongs to the non-intuitive peculiarities of quantum mechanics, but it has been confirmed in many experiments.

####

For more information, please click here

Contacts:
Prof. Dr. Christoph Becher
Tel.: 0681 302-2466


Prof. Dr. Jürgen Eschner
Tel.: 0681 302-58016

Copyright © University of Saarland

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the study (doi: 10.1038/s41467-018-04341-2):

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Quantum Physics

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

Quantum communication

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project