Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Getting a better look at living cells

Tolou Shokuhfar, associate professor of bioengineering at the University of Illinois at Chicago College of Engineering.
CREDIT
UIC
Tolou Shokuhfar, associate professor of bioengineering at the University of Illinois at Chicago College of Engineering. CREDIT UIC

Abstract:
Nanoscale-level imaging of living cells has become a reality in the past few years using transmission electron microscopy and sealed sample holders that keep cells alive in a liquid environment. But do the high-resolution images obtained using these tools truly reflect the structures and functions of cells, or do they show cells damaged by the high-intensity electron beam used in transmission electron microscopy?

Getting a better look at living cells

Chicago, IL | Posted on April 25th, 2018

"We really have had no way of knowing if what we see in images obtained through liquid cell transmission electron microscopy show the natural state of cells, or if the morphological changes we see are actually the result of radiation damage," said Tolou Shokuhfar, associate professor of bioengineering at the University of Illinois at Chicago College of Engineering.

Shokuhfar and colleagues describe a device that works with most transmission electron microscopes that would significantly reduce the exposure of live samples to the electron beam used in transmission electron microscopy. They report their results in the journal Science Advances.

Transmission electron microscopy produces incredibly detailed images of cells that can show structures as small as one or two nanometers across. But for a long time, samples used in transmission electron microscopy had to be dead or frozen because the sample chamber of a transmission electron microscope is a vacuum.

The new field of liquid cell transmission electron microscopy emerged in recent years enabling scientists to study biological, chemical and materials science samples in their near-native environments. This is achieved by placing the sample in liquid inside a tiny sealed chamber that protects it from the high vacuum environment to allow dynamic imaging.

However, currently-available devices that hold samples only allow for a single chamber to be placed under the microscope at a time. "Because you place just one sample at a time under the microscope, you need to perform your pre-imaging focus and setting adjustment on that one sample," said Trevor Moser, a graduate student at Pacific Northwest National Laboratory in Richland, Washington and a co-author on the paper. "By the time you are ready to take pictures, the sample has already been exposed to significant amounts of radiation, so you just never know if the pictures you get show the unaltered cell, or if what you see on the pictures is because of damage from the electron beam," continued Moser, who has previously worked in Shokuhfar's lab.

The research team solved this problem by developing a device with 25 transparent windows rather than the single window sample holders currently provide. With more windows, the researchers expose samples to less radiation by getting closer to the settings and focus they need using one of the windows and then switching to another window where cells haven't yet been exposed to the radiation from the microscope's electron beam. Researchers still need to focus on samples in the 'fresh' window, but they don't have as many adjustments to make, significantly limiting total exposure to the electron beam before images are taken.

Next, the researchers proved that their device could prevent alteration of samples caused by overexposure to electron radiation. They imaged a bacterium called Cupriavidus metallidurans, a small single-celled organism that produces solid gold nanoparticles from aqueous gold tetrachloride, a potent heavy metal toxin to most organisms.

First, they imaged the bacteria by exposing it to increasing levels of radiation over the course of focusing and adjusting their settings before taking pictures. Then, they imaged a second batch of bacteria using their novel 25-window device. The images they produced showed significant differences.

"The images of cells exposed to higher levels of radiation were clearly different from cells imaged with no previous radiation exposure," said James Evans, a senior scientist at Pacific Northwest National Laboratory and a co-author on the paper. "This proves that damage caused by being in the electron beam too long can cause artifacts that can yield false information. We saw much more pristine, undamaged cells using our multi-chamber device."

Shokuhfar, a corresponding author on the paper, said the new device will also enable higher-fidelity imaging of nanoparticles using transmission electron microscopy. "Nanoparticles are also susceptible to damage from radiation, so this device will let us observe more accurately, how nanoparticles grow and change under different conditions, which has application in areas of new materials, nanoparticle interactions and medicine," she said.

###

Hardeep Mehta and Ryan Kelly, from the Environmental Molecular Sciences Laboratory; and Chiwoo Park of Florida State University, are also co-authors on the paper.

This work was supported by the Department of Energy's Office of Biological and Environmental Research Molecules to Mesoscale Bioimaging (project no. 66382) and was performed using Environmental Molecular Sciences Laboratory. Shokuhfar was supported by the National Science Foundation (CAREER Award DMR-1564950).

####

For more information, please click here

Contacts:
Sharon Parmet

312-413-2695

Copyright © University of Illinois at Chicago

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project