Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Understanding gravity: The nanoscale search for extra dimensions: A Japan-US research collaboration involving Osaka University uses high-sensitivity experiments to probe exotic gravitational force

Principle of the experimental test of the inverse-square law of the gravity in nano-meter scale via neutron scattering. Deviation from the inverse-square law will be observed as the modification in the angular distribution of the scattered neutrons.
CREDIT
The NOP collaboration
Principle of the experimental test of the inverse-square law of the gravity in nano-meter scale via neutron scattering. Deviation from the inverse-square law will be observed as the modification in the angular distribution of the scattered neutrons. CREDIT The NOP collaboration

Abstract:
Often, practical limits control the experimental measurements that can be made, governing the difference between what we expect to be true based on the most likely predictions of models and calculations, and findings that have been supported by testing. A team of researchers has now used the world's highest intensity neutron beamline facility, at J-PARC in central Japan, to push the limits of sensitivity for the study of gravitational force. The multicenter work probing the nm range was recently published in Physical Review D.

Understanding gravity: The nanoscale search for extra dimensions: A Japan-US research collaboration involving Osaka University uses high-sensitivity experiments to probe exotic gravitational force

Osaka, Japan | Posted on March 28th, 2018

Most people are familiar with how things around us interact as a result of gravitational interactions. This behavior, known to follow an inverse square law (ISL), has been well explained by experiments down to less than 1 mm. Gravitational interactions over long-distances have also been supported by data collected from astronomy. However, until now, there has been little experimental evidence to support agreement with the ISL when the often-unpredictable quantum level is approached.

"There are numerous effects suggested by accepted theories of gravity over short distance ranges that could be borne out by experiment," study author Tatsushi Shima of Osaka University says. "By successfully extending the search range of an exotic gravity down to short distances of ~0.1 nm, we have been able to demonstrate the highest sensitivity reported to date, producing experimental data that will help to unravel the proposals."

The statistical sensitivity achieved was made possible using the high intensity pulsed neutron beam at the J-PARC facility. The net electromagnetic neutrality of neutrons means that the experiments were not influenced by the electromagnetic background that hampers other approaches to probing short distance ISL deviations. The experiment, based on neutron-noble gas scattering, was the first time-of-flight neutron scattering study.

"As the performance of the world's most powerful beamlines improves, we are able to significantly enhance our knowledge and understanding in step," study corresponding author Tamaki Yoshioka of Kyushu University says. "Such iterative improvements can be very revealing. In the case of gravitational interactions we have made substantial steps towards understanding the dimensions of the space around us."

It is hoped that the study, along with future work to improve sensitivity even further, will help shed light on whether the space in which we live is limited to three dimensions.

####

About Osaka University
Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.

Website: http://resou.osaka-u.ac.jp/en/top

For more information, please click here

Contacts:
Saori Obayashi

81-661-055-886

Copyright © Osaka University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article, "A search for deviations from the inverse square law of gravity at nm range using a pulsed neutron beam" was published as a highlighted article in Physical Review D at DOI: 10.1103/PhysRevD.97.062002:

Related News Press

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Quantum Physics

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Govt.-Legislation/Regulation/Funding/Policy

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Possible Futures

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Research partnerships

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project