Home > Press > Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities
Abstract:
Scientists from the National University of Singapore (NUS) have worked with an international research team to jointly develop a novel approach for deep brain stimulation. The new method utilises upconversion nanoparticles developed by Professor Liu Xiaogang from the Department of Chemistry at NUS Faculty of Science to allow delivery of visible light deep into the brain to stimulate neural activities in a less-invasive manner. This innovation marks a significant breakthrough in optogenetics, empowering researchers to uncover valuable insights about the brain.
Optogenetics is a widely adopted research technique in the field of neuroscience that makes use of visible light to activate or inhibit neurons in the brain, enabling researchers to examine the brain's functions in a minimally invasive manner. The inability of visible light to penetrate into deep brain structures, however, remains a major experimental challenge for this technique, and current deep brain stimulation still requires the insertion of an optical fibre directly into the brain.
To make deep brain stimulation less invasive, Prof Liu and his colleagues began exploring with near-infrared light, known to possess significantly higher tissue penetration capability and also relatively safe for biological samples. Using a two-step process, upconversion nanoparticles are first introduced into the brain by transcranial injection. Upon reaching deep brain, the implanted upconversion nanoparticles, a unique group of luminescent nanomaterials capable of converting near-infrared light into visible light then generates visible light which acts to stimulate the neurons. The strategy has shown to be effective in triggering memory recall and dopamine release in the team's experiments.
This novel approach offers a simpler, less-invasive alternative to fibre-optic implantation for deep brain stimulation, and holds immense potential in facilitating advancement in neuroscience.
Prof Liu, who is the co-author of the study, said, "We have addressed a long-standing experimental challenge faced by neuroscientists with the latest nanotechnology, and it has proven to be an effective strategy for delivering excellent deep brain stimulation with once unimaginable precision. Neuroscientists can therefore leverage this method to visualise the brain state and uncover new clues that will pave the way for novel therapeutic strategies against neurological disorders such as Parkinson's disease."
###
The study, which was conducted in collaboration with RIKEN Brain Science Institute, University of Tokyo, Johns Hopkins University, Keio University and Singapore Institute for Neurotechnology was published in the prestigious scientific journal Science on 9 February 2018.
####
For more information, please click here
Contacts:
Tan Yun Yun
65-651-62308
Copyright © National University of Singapore
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||