Home > Press > Fast-spinning spheres show nanoscale systems' secrets: Rice University lab demonstrates energetic properties of colloids in spinning magnetic field
Rice University graduate student Elaa Hilou (left) and Professor Sibani Lisa Biswal set up an experiment in a device that combines a rotating magnetic field and a microscope. The researchers are studying the effects of a spinning field on magnetic particles. Their findings could help researchers model colloids for cosmetics as well as catalysts for chemicals, among other applications, in a physical system. (Credit: Jeff Fitlow/Rice University) |
Abstract:
Spin a merry-go-round fast enough and the riders fly off in all directions. But the spinning particles in a Rice University lab do just the opposite.
Particles rotated in a spinning magnetic field of 8 gauss, a measure of magnetic strength, stay loosely connected, simulating a droplet dissipating into a gas at its edges. (Credit: Video by the Biswal Lab)
Particles rotated in a spinning magnetic field of 11 gauss and 20 Hz merge and reorganize themselves to quench a grain boundary, which is forced to the outside of the array and eventually eliminated. (Credit: Video by the Biswal Lab)
Experiments in the Rice lab of chemical engineer Sibani Lisa Biswal show micron-sized spheres coming together under the influence of a rapidly spinning magnetic field. That's no surprise because the particles themselves are magnetized.
But how they come together is of interest as the particles first gather into a disorganized aggregated cluster and then into a crystal-like regimen as the magnetic field becomes stronger.
Results of the work led by Biswal and graduate student Elaa Hilou appear in Physical Review Materials. The researchers hope it will inspire ways to look at, model and create novel two-dimensional materials like tunable catalysts or colloids that can change their surface area on demand.
Experiments revealed boundaries, shapes, phase transitions and the creation and resolution of crystal-like defects as between 300 and 1,500 magnetized spheres followed their energetic impulses under the moving field's influence.
"I have been presenting this as a miniaturized version of a fidget spinner where we use the magnetic field to generate an isotropic interaction around the particles," Biswal said. "We can create particle ensembles that are loosely to very tightly packed by the strength of that interaction."
That interested Biswal and Hilou, but not as much as what they saw happening around the edges, where line tension formed by the outermost particles determined the ultimate shape of the arrays.
"Think about a soap bubble," Biswal said. "It always forms a sphere, even when you try to deform it. That's because surface tension wants to minimize its surface area. It's the same for our system, but in two dimensions. The interactions are always trying to minimize what we call the line tension.
"Elaa finds the Gibbs interface and measures the energy at that interface where it goes from many particles thick (at low magnetic field strengths) to nearly a single particle thick by changing the strength of the interaction," she said. "She's done a lot of analysis of the line tension and how it relates to the energetics of the system."
The next step is to create physical, movable models for real systems to see how the constituents react when perturbed. "There's a lot of interest in trying to create models for atomic and molecular systems," Biswal said. "Most of that has been done through computational simulations, but here we have an experimental system that can realize structure and processes such as coalescence."
"For example, in catalysis, if you want to increase the surface area, you want more voids in order to facilitate contact between a catalyst and a reaction," Hilou said. "By increasing the concentration and controlling the field, we can start to see voids and control the interface relative to the bulk."
The technique could model emulsions, she said. "Say you have oil and water and you want to phase-separate them," Hilou said. "In the case of cosmetics and the food industry, you want the emulsions to be stable. We want to be able to mimic their dynamics by controlling particle size and the field strength."
Biswal said the technique might also be used to model systems in which temperature, rather than electromagnetism, is the driver. In fields like metallurgy, defects are removed "by turning up the temperature to give molecules more freedom to move grain boundaries and voids," she said. "Then they decrease the temperature to lock in the structures.
"What we have is a dial that not only mimics the effects of temperature with a magnetic field but also offers the ability to watch through a microscope what happens in an actual system," Biswal said.
Rice graduate alumnus Di Du, now a research statistical analyst at the University of Texas MD Anderson Cancer Center, and graduate student Steve Kuei are co-authors of the paper. The National Science Foundation supported the research.
####
About Rice University
ocated on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,970 undergraduates and 2,934 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for quality of life and for lots of race/class interaction and No. 2 for happiest students by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to http://tinyurl.com/RiceUniversityoverview .
Follow Rice News and Media Relations via Twitter @RiceUNews
For more information, please click here
Contacts:
David Ruth
713-348-6327
Mike Williams
713-348-6728
Copyright © Rice University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Rice Department of Chemical and Biomolecular Engineering:
Rice Department of Materials Science and NanoEngineering:
Related News Press |
Chemistry
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Magnetism/Magnons
Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024
Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023
Videos/Movies
New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022
Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||