Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A new radiation detector made from graphene: A new bolometer exploits the thermoelectric properties of graphene

This is an illustration/photo of the new graphene bolometer, which has a fast response time and works over a wide range of temperatures. With a simple design and relatively low cost, this graphene-based device could be scaled up, enabling a wide range of commercial applications.
CREDIT
Grigory Skoblin
This is an illustration/photo of the new graphene bolometer, which has a fast response time and works over a wide range of temperatures. With a simple design and relatively low cost, this graphene-based device could be scaled up, enabling a wide range of commercial applications. CREDIT Grigory Skoblin

Abstract:
Graphene is a remarkable material: light, strong, transparent and electrically conductive. It can also convert heat to electricity. Researchers have recently exploited this thermoelectric property to create a new kind of radiation detector.

A new radiation detector made from graphene: A new bolometer exploits the thermoelectric properties of graphene

Washington, DC | Posted on February 6th, 2018

Classified as a bolometer, the new device has a fast response time and, unlike most other bolometers, works over a wide range of temperatures. With a simple design and relatively low cost, this device could be scaled up, enabling a wide range of commercial applications. Researchers describe a graphene-based radiation detector this week in Applied Physics Letters, from AIP Publishing.

The discovery of graphene in 2004 was anticipated to herald a whole new type of technology. "But unfortunately, there are some strong fundamental limitations for this material," said Grigory Skoblin of Chalmers University of Technology in Sweden. "Nowadays, the real industrial applications of graphene are quite limited."

Graphene -- composed of single sheets of carbon atoms that form a flat, hexagonal lattice structure -- has been used mainly for its mechanical properties.

"But our device shows that more fundamental properties can be used in actual applications," Skoblin said. The new bolometer is based on graphene's thermoelectric properties. Radiation heats part of the device, inducing electrons to move. The displaced electrons generate an electric field, which creates a voltage difference across the device. The change in voltage thus provides an essentially direct measurement of the radiation.

Other devices rely on the generation of electrical current or resistance change by incoming radiation. But measuring changes in current or resistance requires an external power source to generate an initial current. The mechanism is much simpler than in other bolometers, according to Skoblin.

The piece of graphene in the new bolometer is small, so it's one of the fastest bolometers because it heats up and responds quickly. Furthermore, the device remains sensitive to radiation at temperatures up to 200 degrees Celsius. Conventional bolometers typically work only at cryogenic temperatures.

Other researchers have previously made graphene bolometers, with better properties than this new device, but these models contain a double layer of graphene, making them more difficult to scale, Skoblin said.

Another advantage of the new device is its coating. The researchers previously developed a method to coat graphene with a dielectric polymer called Parylene, which offers a good balance of performance and scalability. You can get better performance by coating with hexagonal boron nitride, Skoblin said, but it's hard to acquire and the coating techniques are difficult to scale up. Other studies suggest that a bolometer with hexagonal boron nitride coating would be less efficient.

The prototype bolometer works only with microwave radiation at 94 gigahertz, but future designs will widen the frequency range. Next, the researchers plan to make the device using chemical vapor deposition to grow larger pieces of graphene, paving the way for mass production.

####

About American Institute of Physics
Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See http://apl.aip.org

For more information, please click here

Contacts:
Julia Majors

301-209-3090

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article, "Graphene bolometer with thermoelectric readout and capacitive coupling to an antenna," is authored by Grigory Skoblin, Jie Sun and August Yurgens. The article appeared in Applied Physics Letters Feb. 5, 2018 (DOI: 10.1063/1.5009629) and can be accessed at:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Graphene/ Graphite

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project