Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New technology aiming to improve trueness in the piezoelectric microscopy characterization of ceramic materials

Side view of the two types of AFM probes used. The one at the right is a ultra-
long tip which diminish the electrostatic interaction between the cantilever and the sample.
Compared to the standard tip-which is images at the right side, the taller tip provides a
cleaner piezoresponse signal in order to acquire the piezoelectric response of the material.
Side view of the two types of AFM probes used. The one at the right is a ultra- long tip which diminish the electrostatic interaction between the cantilever and the sample. Compared to the standard tip-which is images at the right side, the taller tip provides a cleaner piezoresponse signal in order to acquire the piezoelectric response of the material.

Abstract:
A team of researchers from ICMAB has proved that unconventional AFM probes are suitable
to acquire a trueness piezoelectric signal in Piezoresponse Force Microscopy. The work
entitles “Diminish electrostatic in piezoresponse force microscopy through longer or
ultra-stiff tips” published in the prestigious scientific journal Applied Surface
Science( https://authors.elsevier.com/a/1WNqWcXa~oZkP )

New technology aiming to improve trueness in the piezoelectric microscopy characterization of ceramic materials

Barcelona, Spain | Posted on January 26th, 2018

Piezoresponse Force Microscopy is a strongly used characterization technique in the world
of piezoelectrics. Each year almost 300 manuscripts included this technique in their
research, while piezoelectric community publishes more than 5000 papers yearly.

In this work researchers test almost every single AFM conductive probe available in the
market using a novel method that quantifies the electrostatic contribution in their
measurements. The method relies into solving the mathematical expression called
“correlation function” that describes the mathematical operations that a lock-in amplifier
performs to acquire the signals. After the theoretical description, the same sample is studies
with different AFM tips available in the market, through the use of two distinct type of tests.

In the first test, the researchers increment the piezoelectric signal, while maintaining
constant the electrostatic contribution. By doing this, the mount of signal coming from
piezoelectricity increases, and hence, the changes in the final results a dramatically different.
From this test, it is found that longer tips provide the cleaner signal from the overall set of
probes used. These results are confirmed through the use of independent experiments that
corroborates the first results.

The implementation of this solution to the worldwide scientific community is immediate and
can be used in absolutely any AFM manufacturer, which expands the importance and
implications of this research.

####

Contacts:
Andres Gomez
ICMAB-CSIC, Campus UAB
Phone: 677602367
Fax: 677602367

Copyright © Campus de la Universitat Autònoma de Barcelona

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

More info:

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

MXene nanomaterials enter a new dimension Multilayer nanomaterial: MXene flakes created at Drexel University show new promise as 1D scrolls January 30th, 2026

Imaging

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Tools

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project