Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New technology aiming to improve trueness in the piezoelectric microscopy characterization of ceramic materials

Side view of the two types of AFM probes used. The one at the right is a ultra-
long tip which diminish the electrostatic interaction between the cantilever and the sample.
Compared to the standard tip-which is images at the right side, the taller tip provides a
cleaner piezoresponse signal in order to acquire the piezoelectric response of the material.
Side view of the two types of AFM probes used. The one at the right is a ultra- long tip which diminish the electrostatic interaction between the cantilever and the sample. Compared to the standard tip-which is images at the right side, the taller tip provides a cleaner piezoresponse signal in order to acquire the piezoelectric response of the material.

Abstract:
A team of researchers from ICMAB has proved that unconventional AFM probes are suitable
to acquire a trueness piezoelectric signal in Piezoresponse Force Microscopy. The work
entitles “Diminish electrostatic in piezoresponse force microscopy through longer or
ultra-stiff tips” published in the prestigious scientific journal Applied Surface
Science( https://authors.elsevier.com/a/1WNqWcXa~oZkP )

New technology aiming to improve trueness in the piezoelectric microscopy characterization of ceramic materials

Barcelona, Spain | Posted on January 26th, 2018

Piezoresponse Force Microscopy is a strongly used characterization technique in the world
of piezoelectrics. Each year almost 300 manuscripts included this technique in their
research, while piezoelectric community publishes more than 5000 papers yearly.

In this work researchers test almost every single AFM conductive probe available in the
market using a novel method that quantifies the electrostatic contribution in their
measurements. The method relies into solving the mathematical expression called
“correlation function” that describes the mathematical operations that a lock-in amplifier
performs to acquire the signals. After the theoretical description, the same sample is studies
with different AFM tips available in the market, through the use of two distinct type of tests.

In the first test, the researchers increment the piezoelectric signal, while maintaining
constant the electrostatic contribution. By doing this, the mount of signal coming from
piezoelectricity increases, and hence, the changes in the final results a dramatically different.
From this test, it is found that longer tips provide the cleaner signal from the overall set of
probes used. These results are confirmed through the use of independent experiments that
corroborates the first results.

The implementation of this solution to the worldwide scientific community is immediate and
can be used in absolutely any AFM manufacturer, which expands the importance and
implications of this research.

####

Contacts:
Andres Gomez
ICMAB-CSIC, Campus UAB
Phone: 677602367
Fax: 677602367

Copyright © Campus de la Universitat Autònoma de Barcelona

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

More info:

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Tools

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project