Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery

A new study, co-conducted by Binghamton University Assistant Professor of Biomedical Engineering Amber Doiron, is one of the first of its kind to look deeper into these nanoparticles in regards to health.
CREDIT
Binghamton University, State University of New York
A new study, co-conducted by Binghamton University Assistant Professor of Biomedical Engineering Amber Doiron, is one of the first of its kind to look deeper into these nanoparticles in regards to health. CREDIT Binghamton University, State University of New York

Abstract:
Gold nanoparticles could help make drugs act more quickly and effectively, according to new research conducted at Binghamton University, State University of New York.

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery

Binghamton, NY | Posted on November 20th, 2017

Nanoparticles are microscopic particles that are bigger than atoms but smaller than what the eye can see. They are unique for their large surface area-to-volume ratio and their fairly ubiquitous nature. A new study, co-conducted by Binghamton University Assistant Professor of Biomedical Engineering Amber Doiron, is one of the first of its kind to look deeper into these nanoparticles in regards to health.

"Nanoparticles are a huge area of research in the scientific community right now. However, they're not yet well understood for their impact on human health," said Doiron.

"Nanoparticles have unique properties and, because of that, are used in many applications. They're in your food and may get into your bloodstream through environmental exposure. Eventually, they may be used for helping to get drugs to tissues or as imaging agents. We wanted to investigate how nanoparticles interact with human cells," added Doiron.

Doiron and her team looked specifically at the effects that gold nanoparticles have on the health of a cell. They found that nanoparticles can change cells, but only if the particles are a very specific size.

"The nanoparticles have to be around 20 nanometers. Nothing bigger or smaller worked," said Doiron.

Their research found that when the cells that line arteries or veins are exposed to these nanoparticles, the vascular permeability changes. This could potentially help in more effective medication delivery.

However, the researchers are also aware of some limitations to nanoparticles being used in this way. "It has to be exact, otherwise changing the permeability of veins too much could be extremely dangerous," said Doiron.

###

Associate Professor Gretchen Mahler and Assistant Professor Guy German from the Thomas J. Watson School of Engineering and Applied Sciences contributed to this research.

####

For more information, please click here

Contacts:
Amber Doiron

607-777-5477

Copyright © Binghamton University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE - This study, "Nanoparticle size-specific actin rearrangement and barrier dysfunction of endothelial cells," was published in Nanotoxicology.

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Cancer

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project