Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nano-sized gold particles have been shaped to behave as clones in biomedicine

These are ultramonodisperse gold nanorods that behave as clones from an optical point of view.
CREDIT
Guillermo González Rubio.
These are ultramonodisperse gold nanorods that behave as clones from an optical point of view. CREDIT Guillermo González Rubio.

Abstract:
Shaping nanometric gold particles - of the size of millionths of a millimeter - to improve their properties in biomedicine and photonics has been made possible thanks to a special laser system in a work carried out at the Universidad Complutense de Madrid (UCM) and now published in Science.

Nano-sized gold particles have been shaped to behave as clones in biomedicine

Madrid, Spain | Posted on November 3rd, 2017

The research, in which the CIC biomaGUNE and the Universidad Politécnica de Madrid also participate, not only represents a record in optical quality in which billions of gold nanoparticles behave as a single one, but introduces a new way to manipulate and improve nanomaterials by employing lasers as chisels in the hands of a sculptor.

"By using ultrafast lasers, which are very intense but very short in duration (of the order of a billion trillion flashes per second), we have realized a world record in optical quality, where all the obtained shaped particles behave like nano-sized clones", explains Andrés Guerrero Martínez, researcher of the Ramón y Cajal Program at the Faculty of Chemical Sciences of the UCM.

The study provides the physical and chemical clues required to understand and control such nanomaterials, considered to be "perfect" from an optical point of view.

"We have tried during the last fifteen years to obtain identical nanoparticles, so that they all present the same color and their applications are more efficient. In this work, we have focused on the use of gold nanorods, in which minimal variations in their length or width result in significant changes in the color of the light they absorb", says Luis Liz Marzán, scientific director of CIC biomaGUNE and researcher at the Ikerbasque Program.

From tumor treatment to pollution remediation

The applications of nanoparticles rely on their ability to absorb and reflect light of a specific color in a surprisingly efficient way. These so-called plasmonic effects result in optical properties that cannot be achieved with metals of larger dimensions, even at the millimeter scale.

These properties can be used for a large number of useful applications that, in many cases, were not possible until now. In medicine, not only the light reflected by these particles can be used to diagnose diseases, but their light absorption properties can also be exploited to induce the release of heat for, for example, the treatment of tumors in a localized way, thus minimizing the usual side effects of current treatments.

"Plasmonic particles have also found applications in areas such as information technology, energy production, or environmental pollution control, among others", says Guillermo González Rubio, co-author of the paper who has obtained his PhD at the UCM under the supervision of Andrés Guerrero Martínez and Luis Liz Marzán.

Another novelty of this work is the application of ultrafast lasers to shape the geometry of the particles and refine their properties. In this case, Luis Bañares, professor at the UCM and co-author of the article, works at the Ultrafast Laser Center (CLUR) at the UCM.

Furthermore, so as to understand the chemical and physical nature of the shaping process, standard characterization techniques (spectroscopy and electron microscopy) have been employed, as well as new theoretical models and advanced computer simulation techniques.

According to Ovidio Rodríguez Peña, a researcher at the UPM, "the demonstration of this goal and the explanation of the processes that allow it to happen represent a paradigm shift that may open new avenues for the development of nanomaterials with improved properties and applications".

####

For more information, please click here

Contacts:
Andrés Guerrero Martínez

Copyright © Universidad Complutense de Madrid

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference: G. González-Rubio, P. Díaz-Núñez, A. Rivera, A. Prada, G. Tardajos, J. González-Izquierdo, L. Bañares, P. Llombart, L. G. Macdowell, M. Alcolea Palafox, L. M. Liz-Marzán, O. Peña-Rodríguez, A. Guerrero-Martínez. "Femtosecond Laser Reshaping Yields Gold Nanorods with Ultranarrow Surface Plasmon Resonances" Science 2017, 358, 640-644.:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Imaging

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Cancer

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

Environment

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

New gel could boost coral reef restoration: The substance, applied to surfaces as a coating, improved coral larvae settlement by up to 20 times in experiments compared to untreated surfaces May 16th, 2025

Onion-like nanoparticles found in aircraft exhaust May 14th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project