Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles

Abstract:
By deliberately interrupting the order of materials - by introducing different atoms in metal or nanoparticles in liquid crystals - we can induce new qualities. For example, metallic alloys like duralumin, which is composed of 95% of aluminium and 5% copper, are usually harder than the pure metals. This is due to an elastic interaction between the defects of the crystal, called dislocations, and the solute atoms, which form what are referred to as Cottrell clouds around them.

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles

Heidelberg, Germany | Posted on October 13th, 2017

In such clouds, the concentration of solute atoms is higher than the mean concentration in the material. In a paper published in EPJ E, Patrick Oswald from the École Normale Supérieure of Lyon, France, and Lubor Lejček from the Czech Academy of Sciences have now theoretically calculated the static and dynamical properties of the Cottrell clouds, which form around edge dislocations in lamellar liquid crystals of the smectic A variety decorated with nanoparticles. This work could be important, for example, in the context of improving the lubricating performance of such liquid crystals. The Cottrell clouds are difficult to study in solid materials, and even more so when the dislocations are in motion. This is not the case in a smectic A liquid crystals doped with gold nanoparticles where the Cottrell clouds are visible under a simple optical microscope. In addition, the density of dislocations can be controlled experimentally in these materials, allowing the dislocation mobility to be directly measured. A recent experiment showed that it decreases as the concentration of nanonoparticles increases. This leads to a hardening of the material, very similar to what is observed in metallic alloys. When the dislocations move slowly, the Cottrell clouds of nanoparticles are dragged by the dislocations, which decreases their mobility. In this study, the authors demonstrate a formula previously used to approximate the mobility of dislocations in the presence of Cottrell clouds. They then perform a numerical simulation of the problem to study how the Cottrell cloud erodes when the dislocation moves at high speed.

####

For more information, please click here

Contacts:
Sabine Lehr

49-622-148-78336

Copyright © Springer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference: P. Oswald & L. Lejček (2017). Drag of a Cottrell atmosphere by an edge dislocation in a smectic-A liquid crystal, Eur. Phys. J. E 40: 84 DOI 10.1140/epje/i2017-11573-9:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

Display technology/LEDs/SS Lighting/OLEDs

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project