Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Bacterial outer membrane vesicles: An emerging tool in vaccine development: This article by Kendrick B. Turner and Scott A. Walper is published in Drug Delivery Letters, Volume 7, Issue 2, 2017

Engineered bacterial OMV.
CREDIT
Kendrick B. Turner and Scott A. Walper, Bentham Science Publishers
Engineered bacterial OMV. CREDIT Kendrick B. Turner and Scott A. Walper, Bentham Science Publishers

Abstract:
Outer membrane vesicles, biological nanoparticles shed during normal growth by bacteria, have seen significant recent advances in engineering and are thus finding new utility as therapeutic and drug delivery agents.

Bacterial outer membrane vesicles: An emerging tool in vaccine development: This article by Kendrick B. Turner and Scott A. Walper is published in Drug Delivery Letters, Volume 7, Issue 2, 2017

Sharjah, U.A.E. | Posted on September 27th, 2017

One specific research focus explored recently in the literature is the use of bacterial vesicles as adjuvants in vaccine formulations. Early success in this area has demonstrated protection against infection by a number of bacterial species in animal models by engineering vesicles to display species-specific antigens as cargo, either within the interior of the vesicles or displayed on the exterior vesicle surface. In an effort to highlight recent advances in this field, this article explores recent and ongoing efforts to develop novel engineering methods aimed at providing new functionalities for bacterial vesicles as they apply to vaccine formulations. Specifically emerging technologies for engineering these structures, including cargo loading and surface modification will be explored. Bacterial vesicles show great promise as biologically-, derived nanoparticles that could function as a platform technology in a variety of fields. With continued development of novel engineering tools, and an increased understanding in their biogenesis and biological fate in living systems there is significant potential to develop bacterial vesicles as tools for not only vaccine development but also for use in the delivery of therapeutic compounds to targeted cells.

####

For more information, please click here

Contacts:
Faizan ul Haq

Copyright © Bentham Science Publishers

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference: Turner KB et al (2017). Bacterial Outer Membrane Vesicles: An Emerging Tool in Vaccine Development, as Adjuvants, and for Therapeutic Delivery, Drug Delivery Letters, DOI: 10.2174/2210303107666170725163826:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project