Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Carbon displays quantum effects

They played a key role in demonstrating the unusual behaviour of carbon: Tim Schleif (left) and Joel Mieres Perez (right) © RUB, Marquard
They played a key role in demonstrating the unusual behaviour of carbon: Tim Schleif (left) and Joel Mieres Perez (right) © RUB, Marquard

Abstract:
Chemists at Ruhr-Universität Bochum have found evidence that carbon atoms cannot only behave like particles but also like waves. This quantum-mechanical property is well-known for light particles such as electrons or hydrogen atoms. However, researchers have only rarely observed the wave-particle duality for heavy atoms, such as carbon. The team led by Prof Dr Wolfram Sander and Tim Schleif from the Chair for Organic Chemistry II together with Prof Dr Weston Thatcher Borden, University of North Texas, reports in the journal "Angewandte Chemie".

Carbon displays quantum effects

Bochum, Germany | Posted on July 13th, 2017

"Our result is one of few examples showing that carbon atoms can display quantum effects," says Sander. Specifically, the researchers observed that carbon atoms can tunnel. They thus overcome an energetic barrier, although they do not actually possess enough energy to do that.

Rarely observed for heavy particles

Wolfram Sander explains the paradox: "It's as though a tiger has left his cage without jumping over the fence, which is much too high for him. But he still gets out." This is only possible if he behaves like a wave, but not if he behaves like a particle. The probability of an object being able to tunnel depends on its mass. The phenomenon can, for instance, be observed much more easily for light electrons than for relatively heavy carbon atoms.

The researchers investigated the tunnel reaction using the Cope rearrangement, a chemical reaction that has been known for almost 80 years. The starting material for the reaction, a hydrocarbon compound, is identical to the product molecule. The same chemical compound thus exists before and after the reaction. However, the bonds between the carbon atoms change during the process.

In their experiment, the Bochum-based researchers marked one of the carbon atoms in the molecule: They replaced the hydrogen atom bonded to it with the hydrogen isotope deuterium, a heavier version of hydrogen. Molecules before and after the Cope rearrangement differed in terms of the distribution of the deuterium. Due to these different distributions, both molecular forms had slightly different energies.

Reaction shouldn't actually take place

At room temperature, this difference has little effect; due to the plentiful supply of thermal energy in the surrounding area, both forms occur equally frequently. However, at very low temperatures under ten Kelvin, one molecule form is significantly preferred due to the energy difference. When transitioning from room temperature to extremely low temperatures, the balance has to move from an equal distribution of both forms to an uneven distribution.

This transition cannot, however, occur in the classic way - since, when rearranging from one form to the other, an energy barrier has to be overcome, although the molecule itself does not have the energy for this and the cold environment is also unable to provide it. Although the new balance should not occur in the classic way, the researchers were nevertheless able to demonstrate it in the experiment. Their conclusion: the Cope rearrangement at extremely low temperatures can only be explained by a tunnel effect. They thus provided experimental evidence for a prediction made by Weston Borden over five years ago based on theoretical studies.

Solvents influence ability to tunnel

At Ruhr-Universität, Wolfram Sander undertakes research in the cluster of excellence Ruhr Explores Solvation, where he concerns himself with the interactions of solvents and dissolved molecules. "It is known that solvents influence the ability to tunnel," says the chemist. "However, so far it has not been understood how they do that."

####

For more information, please click here

Contacts:
Wolfram Sander

49-234-322-4593

Copyright © Ruhr-Universität Bochum

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

Chemistry

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Catalyzing environmental cleanup: A highly active and selective molecular catalyst and electrified membrane: Innovative electrochemical catalyst breaks down trichloroethylene pollutants at unprecedented rate September 13th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Quantum Physics

Energy transmission in quantum field theory requires information September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Quantum nanoscience

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project