Home > Press > Nanomedicine opens door to precision medicine for brain tumors
Abstract:
-Proof-of-concept study demonstrates potential therapy for incurable glioblastoma brain tumors
-Involves injecting nanoparticles into tumors to shut down the cells driving the cancer
-Nanoparticle platform delivers molecules that can target the specific genetic makeup of a patient's tumor
Early phase Northwestern Medicine research has demonstrated a potential new therapeutic strategy for treating deadly glioblastoma brain tumors.
The strategy involves using lipid polymer based nanoparticles to deliver molecules to the tumors, where the molecules shut down key cancer drivers called brain tumor initiating cells (BTICs).
"BTICs are malignant brain tumor populations that underlie the therapy resistance, recurrence and unstoppable invasion commonly encountered by glioblastoma patients after the standard treatment regimen of surgical resection, radiation and chemotherapy," explained the study's first author, Dr. Dou Yu, research assistant professor of neurological surgery at Northwestern University Feinberg School of Medicine.
The findings were published in the journal Proceedings of the National Academy of Sciences.
Using mouse models of brain tumors implanted with BTICs derived from human patients, the scientists injected nanoparticles containing small interfering RNA (siRNA) -- short sequences of RNA molecules that reduce the expression of specific cancer promoting proteins -- directly into the tumor. In the new study, the strategy stopped tumor growth and extended survival when the therapy was administered continuously through an implanted drug infusion pump.
"This major progress, although still at a conceptual stage, underscores a new direction in the pursuit of a cure for one of the most devastating medical conditions known to mankind," said Yu, who collaborated on the research with principal investigator Dr. Maciej Lesniak, Michael J. Marchese Professor of Neurosurgery and chair of neurological surgery.
Glioblastoma is particularly difficult to treat because its genetic makeup varies from patient to patient. This new therapeutic approach would make it possible to deliver siRNAs to target multiple cancer-causing gene products simultaneously in a particular patient's tumor.
In this study, the scientists tested siRNAs that target four transcription factors highly expressed in many glioblastoma tissues -- but not all. The therapy worked against classes of glioblastoma BTICs with high levels of those transcription factors, while other classes of the cancer did not respond.
"This paints a picture for personalized glioblastoma therapy regimens based on tumor profiling," Yu said. "Customized nanomedicine could target the unique genetic signatures in any specific patient and potentially lead to greater therapeutic benefits."
The strategy could also apply to other medical conditions related to the central nervous system -- not just brain tumors.
"Degenerative neurological diseases or even psychiatric conditions could potentially be the therapeutic candidates for this multiplexed delivery platform," Yu said.
Before scientists can translate this proof-of-concept research to humans, they will need to continue refining the nanomedicine platform and evaluating its long-term safety. Still, the findings from this new research provide insight for further investigation.
"Nanomedicine provides a unique opportunity to advance a therapeutic strategy for a disease without a cure. By effectively targeting brain tumor initiating stem cells responsible for cancer recurrence, this approach opens up novel translational approaches to malignant brain cancer," Lesniak summed up.
###
Yu and Lesniak, both members of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University, collaborated on this research with scientists at the Massachusetts Institute of Technology, Harvard University and Northwestern's McCormick School of Engineering.
This study was supported by the National Institutes of Health's National Cancer Institute Outstanding Investigator Award R35CA197725, a Burroughs Wellcome Collaborative Travel Grant, an Elsa U. Pardee Foundation grant, and a Northwestern University I3 Pilot Grant.
####
For more information, please click here
Contacts:
Marla Paul
Copyright © Northwestern University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Cancer
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Possible Futures
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Nanomedicine
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Nanobiotechnology
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Research partnerships
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |