Home > Press > Into the quantum world with a tennis racket: Classical mechanics helps control quantum computers
The motion of a tennis racket in the air can help predict the behavior of quanta. While the racket rotates 360 degrees about its lateral axis, the tennis racket effect leads to an unintentional 180-degree flip about its longitudinal axis. The overall rotation leaves the red, bottom side facing upward. CREDIT Steffen Glaser / TUM |
Abstract:
Quantum technology is seen as an important future-oriented technology: smaller, faster and with higher performance than conventional electronics. However, exploiting quantum effects is difficult because nature's smallest building blocks have properties quite distinct from those we know from our everyday world. An international team of researchers has now succeeded in extracting a fault tolerant manipulation of quanta from an effect of classical mechanics.
The motion of a tennis racket in the air can help predict the behavior of quanta. "Using an analogy from classical physics aids us in more efficiently designing and illustrating control elements for phenomena in the quantum world," reports Stefan Glaser, professor in the Department of Chemistry at the Technical University of Munich (TUM).
"Controlling the properties of quanta and using them in technical processes has proven difficult thus far because the quanta adhere to their own laws, which often exceed our imagination," explains the scientist. "Possible applications such as secure networks, highly sensitive measuring equipment and ultrafast quantum computers are thus still in their infancy."
Quanta under control
"Utilizing quantum effects in a technical manner by influencing the behavior of particles through electromagnetic fields required the fastest possible methods to develop fault-tolerant control sequences," says Glaser. "To date, most of the methods build on very complicated computational processes."
Together with an international team of physicists, chemists and mathematicians, the researcher has now discovered an unexpected, promising and novel approach: Using the tennis racket effect, a well-known phenomenon in classical mechanics, the consistent alteration in the spin of quanta via electromagnetic control commands can be visualized.
Tennis racket in motion
The tennis racket effect describes what happens when one tosses a tennis racket into the air while imparting a rotation about an axis. When one spins the racket about its transverse axis a surprising effect appears: In addition to the intended 360-degree rotation about its transverse axis, the racket will almost always perform an unexpected 180-degree flip about its longitudinal axis. When the racket is caught, the initial bottom side will be facing up.
"Responsible for this effect are tiny deviations and perturbations during the toss and the different moments of inertia along the three axes of an asymmetrical body. The effect can also be observed by tossing a book or cell phone into the air - for good measure over a soft bedding - instead of a tennis racket," elucidates Glaser. The longest and shortest axes are stable. However, the intermediate axis, in the case of a tennis racket, the transverse axis, is unstable and even miniscule agitations reliably trigger an additional 180-degree rotation.
Quanta in motion
Quanta also possess angular momentum, known as spin. This can be influenced by applying an electromagnetic field. "The aim of this quantum technique is to change the orientation of the spin in a targeted manner, thereby minimizing errors caused by small perturbations," says Glaser.
"The discovered mathematical analogy between the geometric properties of classical physics pertaining to freely rotating objects and controlling quantum phenomena can now be utilized to optimize the electromagnetic control of quantum states," summarizes co-author Prof. Dominique Sugny. As well as at the French University of Burgundy the scientists works as a Hans Fischer Fellow at the Institute for Advanced Study at TUM.
New, robust models
Using measurements of the nuclear spin, the team could demonstrate experimentally that the tennis racket effect really does improve the robustness of scattering sequences. They have now published their results in the journal "Scientific Reports."
"Based on these research results, we can now develop more efficient mathematical models that allow errors to be avoided when controlling quantum processors," adds Glaser. "Building on the well-understood phenomenon from classical physics, we can not only visualize the development of reliable control sequences in quantum technology, but also accelerate them significantly."
###
The research was funded by the German Research Foundation (DFG), the French National Research Agency (ANR) and the French National Center of Scientific Research (CNRS), the Mexican funding program Convocatorias Abiertas Fondo de Cooperación Internacional en Ciencia y Tecnología del Conacyt (FONCICYT), the Autonomous National University of Mexico, the Bavarian Elite Network and the Technical University of Munich via the Institute for Advanced Study funded by the German Excellence Initiative and the European Union. The experiments were conducted at the Bavarian NMR Center in Garching.
####
For more information, please click here
Contacts:
Dr. Andreas Battenberg
49-892-891-0510
Copyright © Technical University of Munich (TUM)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Quantum Physics
Energy transmission in quantum field theory requires information September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Quantum Computing
New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||