Home > Press > Physicists make quantum leap in understanding life's nanoscale machinery
![]() |
UQ's Mr Nicolas Mauranyapin, Professsor Warwick Bowen and Dr Lars Madsen |
Abstract:
A diagnostic technique that can detect tiny molecules signalling the presence of cancer could be on the horizon.
The possibility of an entirely new capability for detecting cancer at its earliest stages arises from University of Queensland physicists applying quantum physics to single molecule sensing for the first time.
Australian Research Council Future Fellow Professor Warwick Bowen said the research - reported in Nature Photonics this week - demonstrated how quantum technologies could revolutionise the study of life's "nanoscale machinery, or biological motor molecules".
"Motor molecules encode our genetic material, create the energy our cells use to function, and distribute nutrients at a sub-cellular level," Professor Bowen said.
"Unlike methods currently available, the technique helps us observe the behaviour of single biomolecules without large-label particles or damaging light intensities."
PhD student Nicolas Mauranyapin said motor molecules drove all of life's primary functions, but scientists did not yet completely understand their workings.
"Our research opens a new door to study motor molecules in their native state, at the nanoscale," Mr Mauranyapin said.
Project researcher Dr Lars Madsen said the project applied techniques used to detect gravitational waves from black holes in outer space to the nanoscale - super small - world of molecular biology.
"The techniques required to detect extremely faint signals produced by distant black holes were developed over decades," Dr Madsen said.
"Our research translates this technological development over to the biosciences and offers the possibility of a new biomedical diagnostics technique capable of detecting the presence of even a single cancer marker molecule."
Researchers from five countries - Australia, New Zealand, Denmark, France and Pakistan - were involved in the project.
It is funded by the United States Air Force Office of Scientific Research, which aims to use the technique to help understand stress on pilot behaviour at the sub-cellular level.
###
The project is part of the University of Queensland Precision Sensing Initiative, a joint initiative of the schools of Mathematics and Physics and of Information Technology and Electrical Engineering.
It was supported by the ARC Centre of Excellence for Engineered Quantum Systems, which aims to develop next-generation quantum technologies for future Australian industries.
####
For more information, please click here
Contacts:
Warwick Bowen
61-040-461-8722
Copyright © University of Queensland
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Evanescent single-molecule biosensing with quantum limited precision (doi: 10.1038/nphoton.2017.99)
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Quantum Physics
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Cancer
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Nanobiotechnology
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Research partnerships
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
Quantum nanoscience
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Programmable electron-induced color router array May 14th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |