Home > Press > New research could trigger revolution in computer electronics manufacturing
![]() |
Professor Monica Craciun and Dr Anna Baldycheva from Exeter’s Centre for Graphene Science |
Abstract:
A pioneering new technique to produce cutting-edge, versatile microchips could revolutionize the speed, efficiency and capability of the next generation of computers.
Researchers from the University of Exeter have developed an innovative new method to engineer computer chips more easily and cheaper than conventional methods.
The discovery could revolutionise the production of optoelectronic materials - or devices that produce, detect and control light - which are vital to the next generation of renewable energy, security and defence technologies, the researchers said.
The research is published in the respected journal, Scientific Reports.
Dr Anna Baldycheva, from Exeter's Centre for Graphene Science and author of the paper said: "This breakthrough will hopefully lead to a revolution in the development of vital new materials for computer electronics. The work provides a solid platform for the development of novel next-generation optoelectronic devices. Additionally, the materials and methods used are extremely promising for a wide range of further potential applications beyond the current devices."
The innovative new research focused on developing a versatile, multi-functional technology to significantly enhance future computing capabilities.
The team used microfluidics technology, which uses a series of minuscule channels in order to control the flow and direction of tiny amounts of fluid. For this research, the fluid contains graphene oxide flakes,that are mixed together in the channels, to construct the chips.
While the graphene oxide flakes are two-dimensional- consisting of length and width only- the research team used a new sophisticated light-based system to drive the assembly of the three-dimensional chip structures.
Crucially, the research team have analysed their methodology to not only confirm the technique is successful, but also to provide a blueprint for others to use to help manufacture the chips.
Professor Monica Craciun, co-author of the paper and Associate Professor of Nanoscience at Exeter added: We are very excited about the potential of this breakthrough and look forward to seeing where it can take the optoelectronics industry in the future. "
####
For more information, please click here
Contacts:
Duncan Sandes
44-013-927-22391
Copyright © University of Exeter
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Hardware
The present and future of computing get a boost from new research July 21st, 2023
A Carbon Nanotube Microprocessor Mature Enough to Say Hello: Three new breakthroughs make commercial nanotube processors possible March 2nd, 2020
Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor February 11th, 2020
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Chip Technology
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Optical computing/Photonic computing
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Programmable electron-induced color router array May 14th, 2025
Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Photonics/Optics/Lasers
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |