Home > Press > Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles
![]() |
Abstract:
Soil nematodes Caenorhabditis elegans are very small roundworms that are studied with microscopy. They are widely used as model organisms in genetics, neurophysiology, and developmental and quantitative biology research. Their cuticle is a fitting testing material for toxicology and medication screening.
In a new study, researchers report for the first time the effective imaging of the nanoscale structure of C. elegans nematodes' cuticle using atomic force microscopy operating in PeakForce Tapping mode.
Research Associate Farida Akhatova explained, «Before the experiments we obtained traditional SEM images of nematodes. Unfortunately, the preparatory procedures sometimes do not allow to preserve a worm's body and alters the properties of their cuticle. AFM demonstrates typical morphological properties of epicuticle in high definition. However, the enhanced scanning also shows irregularities that appear on specimens' surfaces because of dehydration. Here we show AFM imaging in water for the first time. Although almost everything had been known about its surface anatomy, there are several peculiarities that had not yet been found out before the research».
####
For more information, please click here
Contacts:
Yury Nurmeev
Copyright © Kazan Federal University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Imaging
Turning up the signal November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Nanomedicine
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Tools
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
Turning up the signal November 8th, 2024
Nanobiotechnology
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |