Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Portable superconductivity systems for small motors: Cambridge University lab achieves a breakthrough for portable superconductivity systems that are applicable for small motors, health care and other uses

Abstract:
Superconductivity, where electrical currents course unhindered through a material, is one of modern physics' most intriguing scientific discoveries. It has many practical uses. Governments, industries, and health care and science centers all make use of superconductivity in applications extending from MRIs in hospitals to the cavities of particle accelerators, where scientists explore the fundamentals of matter. However, practical exploitation of superconductivity also presents many challenges.

Portable superconductivity systems for small motors: Cambridge University lab achieves a breakthrough for portable superconductivity systems that are applicable for small motors, health care and other uses

Washington, DC | Posted on February 8th, 2017

The challenges are perhaps greatest for researchers trying to integrate superconductivity in small, portable systems. Cambridge University academic and superconductivity expert John Durrell and his team demonstrate this week in Applied Physics Letters, from AIP Publishing, that a portable superconducting magnetic system, which is, in essence, a high performance substitute for a conventional permanent magnet, can attain a 3-tesla level for the magnetic field. Durrell said his team's work in large part evolved from the innovative findings of University of Houston physicist Roy Weinstein, who has shown how conventional electromagnets and pulsed field magnetization can be used to activate superconducting magnetic fields which are "captured" and sustained as part of a superconductive arrangement. This avoids the requirement for large expensive superconducting magnets to "activate" such portable systems. Also key, Durrell pointed out, is that his team capitalized on other new and cheaper technologies, especially for cooling.

"For example, the leap with advances in cryogenics, allows you to do interesting things in other areas, too," Durell explained. "There is a lot coming together to make this possible." While large industrial-size superconducting systems do generate a 20-tesla magnetic field, Durrell's 3-tesla magnetic field is new for a portable system.

Durrell and his team were curious about what they could do as they looked at Weinstein's work just a few years earlier. Weinstein demonstrated that with conventional external electromagnetic pulsing of a medium, it was possible to "capture" a magnetic field in a superconductor using a much smaller external magnetic field than previously thought possible. The Weinstein investigation used Yttrium Barium Cuprate doped with uranium and subject to an irradiation treatment. Durrell's team looked for a less expensive material and chose Gadolinium Barium Cuprate, without uranium doping. Difan Zhou, team investigator and lead author, came up with the idea of extending Weinstein's findings, Durrell said, and the research, which took just short of two years to do, has paid off.

"It was a surprise to us that we managed to see in a not-quite-so-cutting-edge-material the same giant flux leap effect as Roy Weinstein demonstrated," Durrell said. "The key thing that made this possible is that we have looked at what Roy has done to get it to work but for this kind of portable system. Before we were using conventional superconducting magnets to charge our bulks. This will make access to these high fields cheaper and more practical."

Advances in cheaper, more efficient cooling -- the cryogenic system -- were also key for Durrell and team's research. For both the magnetic field charging and sustaining phases, it is necessary to keep the superconducting sample cool or else the superconductivity gives out. Recently, the private sector has come up with cryogenic systems that are cheap and light, and Durrell used a cooling system from Sunpower Inc., a U.S. firm. According to Durrell, this lightness and relative low-cost could make portable superconductivity in various products a real possibility.

The total effect of bringing together these new technological opportunities, Durrell pointed out, is "essentially a better, portable permanent magnet -- one with a 3-tesla rather than 1-tesla magnetic field. The obvious interest in that is that you could use that to make a smaller and lighter motor."

Low cost NMR and MRI systems for hospitals are also a strong possibility for use, Durrell explained, as these systems often use large superconducting magnets. Magnetically targeted drug delivery systems in human and veterinary applications may also be enabled.

Durrell and his team are planning for more testing for more magnetic power and overall efficiency. They have received significant support from The Boeing Company for this investigation, and Durrell feels it is a strong example of what a company and an academic lab can do when they team up for basic research.

####

About American Institute of Physics
Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See apl.aip.org.

For more information, please click here

Contacts:
AIP Media Line

301-209-3090

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article, "A portable magnetic field of >3 T generated by the flux jump assisted, pulse field magnetization of bulk superconductors," is authored by Difan Zhou, Mark D. Ainslie, Yunhua Shi, Anthony R. Dennis, Kaiyuan Huang, John R. Hull, David A. Cardwell and John H. Durrell. The article will appear in Applied Physics Letters on Feb. 7, 2017 (DOI: 10.1063/1.4973991). After that date, it can be accessed at:

Related News Press

Superconductivity

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Magnetism/Magnons

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Openings/New facilities/Groundbreaking/Expansion

OCSiAl expands its graphene nanotube production capacities to Europe June 17th, 2022

GLOBALFOUNDRIES Moves Corporate Headquarters to its Most Advanced Semiconductor Manufacturing Facility in New York April 27th, 2021

Oxford Instruments Plasma Technology relocates to advanced manufacturing facility: Move driven by exceptional business growth February 12th, 2021

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project