Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New method improves accuracy of imaging systems

Scientists studied the motion of insulin-containing vesicles, which contain thousands of insulin molecules within an insulin-secreting cell (seen here). This work stimulated collaborative research that led to the development of the single-pixel interior filling function.
CREDIT
Courtesy of Prof. Norbert Scherer
Scientists studied the motion of insulin-containing vesicles, which contain thousands of insulin molecules within an insulin-secreting cell (seen here). This work stimulated collaborative research that led to the development of the single-pixel interior filling function. CREDIT Courtesy of Prof. Norbert Scherer

Abstract:
New research provides scientists looking at single molecules or into deep space a more accurate way to analyze imaging data captured by microscopes, telescopes and other devices.

New method improves accuracy of imaging systems

Chicago, IL | Posted on February 8th, 2017

The improved method for determining the position of objects captured by imaging systems is the result of new research by scientists at the University of Chicago. The findings, published Dec. 26 in Proceedings of the National Academy of Sciences, provides a mechanism--known as single-pixel interior filling function, or SPIFF -- to detect and correct systematic errors in data and image analysis used in many areas of science and engineering.

"Anyone working with imaging data on tiny objects -- or objects that appear tiny -- who wants to determine and track their positions in time and space will benefit from the single-pixel interior filling function method," said co-principal investigator Norbert Scherer, a UChicago chemistry professor.

Researchers across the sciences use imaging to learn about objects on scales ranging from the very small, such as nanometers, to the very large, such as astrophysical scales. Their work often includes tracking the movement of such objects to learn about their behavior and properties.

Many imaging systems and image-based detectors are constituted of pixels, such as with a mega-pixel cell phone.

So-called particle tracking allows researchers to determine the position of an object down to a single pixel and even explore sub-pixel localization to better than one-tenth of a pixel accuracy. With an optical microscope's resolution of about 250 nanometers and an effective pixel size of about 80 nanometers, particle tracking allows researchers to locate the center or location of an object to within a few nanometers, provided enough photons are measured.

But such sub-pixel resolution depends on algorithms to estimate the position of objects and their trajectories. Using such algorithms often results in errors of precision and accuracy due to factors such as nearby or overlapping objects in the image and background noise.

SPIFF can correct the errors with little added computational costs, according to Scherer. "Until this work, there were no simple ways to determine if the tracking and sub-pixel localization was accurate and to correct the error if it was not," he said.

Applicable to many disciplines

"Analyzing an image to obtain a rough estimate of an object's position isn't too difficult, but making optimal use of all the information in an image to obtain the best possible tracking information can be really challenging," said David Grier, professor of physics at New York University, who was not involved in the research. "Given how widely image-based particle tracking has penetrated physics, chemistry, biology and many engineering disciplines, this method should be very widely adopted."

Sub-pixel data analysis can be biased by subtle features of the image-formation process, according to Grier, and these biases can shift a trajectory's apparent position by as much as half a pixel relative to its true position. "For sensitive measurements of delicate physical processes, that's a disaster," Grier said.

"The method described in the PNAS paper, however, explains how to detect these biases and how to correct for them, thereby helping to confirm that the tracking information is reliable," he added.

The research described in the paper applied SPIFF to experimental data on solids (i.e., colloidal spheres) suspended in a liquid, but the researchers have now applied their method to many other datasets, including nanoscale features of cells (e.g. vesicles), metallic nanoparticles and even single molecules, Scherer said, adding that the SPIFF method is applicable to all tracking algorithms.

"We believe that SPIFF will be important for many studies in biology and nanoscience and, although we have not worked with images from telescopes, SPIFF could even help determine and correct errors in star-tracking data," Scherer said.

####

For more information, please click here

Contacts:
Greg Borzo

773-702-8366

Copyright © University of Chicago

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Imaging

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Tools

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Aerospace/Space

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Onion-like nanoparticles found in aircraft exhaust May 14th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project