Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Chiral quantum optics: A new research field with bright perspectives

This is the directional emission of light.
CREDIT
TU Wien
This is the directional emission of light. CREDIT TU Wien

Abstract:
Recently, surprising physical effects were observed using special microscopic waveguides for light. Such "photonic structures" currently are revolutionizing the fields of optics and photonics, and have opened up the new research area of "Chiral Quantum Optics". Physicists from Copenhagen, Innsbruck, and Vienna, who are leading figures in this field, have now written an overview on the topic which just appeared in the scientific journal Nature.

Chiral quantum optics: A new research field with bright perspectives

Vienna, Austria | Posted on January 31st, 2017

What one learns at school is that light oscillates under a right angle (transversal) with respect to its direction of propagation. Among experts, however, it was already known that light behaves differently when it is confined strongly in the transversal plane using so-called "photonic structures". In particular, this is the case for special ultra-thin glass fibers which have a diameter of only a few hundred nanometers (one nanometer is a millionth part of a millimeter) and which are thereby smaller than the wavelength of light. Also waveguides based on so-called "photonic crystals" (two-dimensional structures with periodically arranged holes) can confine light in this way.

In this situation, the light also oscillates along its propagation direction (longitudinal). The combination of transversal and longitudinal oscillation leads to a rotating electric field which physicist call circular polarization. Without the spatial confinement, the electric field associated with circularly polarized light behaves like the propeller of an aircraft whose axis is parallel to the direction of propagation. "However, in narrow photonic waveguides, the electric field of the light resembles the rotor of a helicopter," explains Arno Rauschenbeutel from the Vienna Center for Quantum Science and Technology at the Institute of Atomic and Subatomic Physics of TU Wien, Austria. Here, the spin of the light points along the axis of the rotor and is therefore oriented perpendicular to the propagation direction of the light.

Spin-momentum locking of light

This unexpected phenomenon has important consequences: The rotational sense of the electric field is suddenly defined by the propagation direction of the light. "As soon as light in a photonic structure travels in the opposite direction, the electric field rotates the other way around and the spin flips", states Rauschenbeutel. Physicists call this phenomenon spin-momentum locking.

Things become particularly thrilling when so-called "quantum emitters" are coupled to the light field. These could for example be atoms or quantum dots, i.e., nanoscopic structures made from semiconductor material. Such emitters can be excited by light (light absorption) and radiate it back (light emission). Until recently, it was taken for granted in quantum optics that this interaction between light and emitters is always symmetric; precisely the same amount of light is radiated into one and into the opposite direction.

However, quantum emitters can be prepared such that they only absorb light of a certain polarization. In photonic structures, the rotational sense of the electric field, i.e., the light's polarization, depend on the propagation direction. Consequently, if we now bring a suitably prepared quantum emitter into the light field of a photonic structure, the strength of the interaction between the emitter and the light will depend on the light's propagation direction. "Having a direction-dependent interaction means that the symmetry is broken: The emitter radiates differently into opposite directions," states Rauschenbeutel. This direction-dependence (chirality) is the underlying concept of "chiral quantum optics" and occurs not only for the emission of light, but also for absorption and scattering.

Successful cooperation

Since 2012, different groups have demonstrated corresponding effects in many experiments and used them for different purposes. Rauschenbeutel and his team concentrated their research on ultrathin glass fibers and bottle-shaped resonators, which they couple to atoms and microscopic metallic particles. Their co-authors around Peter Lodahl from the Niels Bohr Institute in Copenhagen, on the other hand, use waveguides based on photonic crystals. Furthermore, Hannes Pichler and Peter Zoller from the University of Innsbruck and the Institute for Quantum Optics und Quantum Information of the Austrian Academy of Sciences provided the theoretical foundations and developed impressive visions for the future.

The new physical effects enable fundamentally new applications. "We developed photonic diodes which are one-way streets for light. We realized circulators in which a single atom controls light similar to traffic in a roundabout," says Rauschenbeutel emphasizing the successful cooperation between the Austrian scientists within the Special Research Program FoQuS (Foundations and Applications of Quantum Science) for this work. Such nonreciprocal devices have optical properties that depend on the propagation direction of the light and, analogously to their electronic counterparts, are required for the realization optical circuits. Such optical chips could be employed in future computers.

But optical chips based on chiral quantum optics may not only be used for classical information processing. They are also suitable for processing single photons and can furthermore be prepared in quantum mechanical superposition states. In this way, chiral quantum optical components are well suited for process quantum information in future quantum networks or quantum computers.

####

For more information, please click here

Contacts:
Arno Rauschenbeutel

43-158-801-141-761

Copyright © Vienna University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Original publication: Chiral quantum optics

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Chip Technology

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Quantum Computing

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Optical computing/Photonic computing

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Programmable electron-induced color router array May 14th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Photonics/Optics/Lasers

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project