Home > Press > Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires
![]() |
Representation of the creation of ultra-high energy density matter by an intense laser pulse irradiation of an array of aligned nanowires. CREDIT R. Hollinger and A. Beardall |
Abstract:
The energy density contained in the center of a star is higher than we can imagine - many billions of atmospheres, compared with the 1 atmosphere of pressure we live with here on Earth's surface.
These extreme conditions can only be recreated in the laboratory through fusion experiments with the world's largest lasers, which are the size of stadiums. Now, scientists have conducted an experiment at Colorado State University that offers a new path to creating such extreme conditions, with much smaller, compact lasers that use ultra-short laser pulses irradiating arrays of aligned nanowires.
The experiments, led by University Distinguished Professor Jorge Rocca in the Departments of Electrical and Computer Engineering and Physics, accurately measured how deeply these extreme energies penetrate the nanostructures. These measurements were made by monitoring the characteristic X-rays emitted from the nanowire array, in which the material composition changes with depth.
Numerical models validated by the experiments predict that increasing irradiation intensities to the highest levels made possible by today's ultrafast lasers could generate pressures to surpass those in the center of our sun.
The results, published Jan. 11 in the journal Science Advances, open a path to obtaining unprecedented pressures in the laboratory with compact lasers. The work could open new inquiry into high energy density physics; how highly charged atoms behave in dense plasmas; and how light propagates at ultrahigh pressures, temperatures, and densities.
Creating matter in the ultra-high energy density regime could inform the study of laser-driven fusion - using lasers to drive controlled nuclear fusion reactions - and to further understanding of atomic processes in astrophysical and extreme laboratory environments.
The ability to create ultra-high energy density matter using smaller facilities is thus of great interest for making these extreme plasma regimes more accessible for fundamental studies and applications. One such application is the efficient conversion of optical laser light into bright flashes of X-rays.
The work was a multi-institutional effort led by CSU that included graduate students Clayton Bargsten, Reed Hollinger, Alex Rockwood, and undergraduate David Keiss, all working with Rocca. Also involved were research scientists Vyacheslav Shlyapsev, who worked in modeling, and Yong Wang and Shoujun Wang, all from the same group.
Co-authorship included Maria Gabriela Capeluto from the University of Buenos Aires, and Richard London, Riccardo Tommasini and Jaebum Park from Lawrence Livermore National Laboratory (LLNL). Numerical simulations were conducted by Vural Kaymak and Alexander Pukhov from Heinrich-Heine University in Dusseldorf, using atomic data by Michael Busquet and Marcel Klapisch from Artep, Inc.
###
The research was supported by the High Energy Density Laboratory Plasmas program in Fusion Energy Sciences, Office of Science, in the U.S Department of Energy. It was also aided by a previous grant from the Defense Threat Reduction Agency. The work of the LLNL researchers was performed under the auspices of the U.S Department of Energy.
####
For more information, please click here
Contacts:
Anne Manning
607-592-7387
Copyright © Colorado State University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Laboratories
A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Govt.-Legislation/Regulation/Funding/Policy
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Possible Futures
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Military
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
Photonics/Optics/Lasers
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Programmable electron-induced color router array May 14th, 2025
Research partnerships
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |