Home > Press > New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments
![]() |
Abstract:
Inspired by micro-scale motions of nature, a group of researchers at the Indian Institute of Technology Madras and the Institute of Mathematical Sciences, in Chennai, India, has developed a new design for transporting colloidal particles, tiny cargo suspended in substances such as fluids or gels, more rapidly than is currently possible by diffusion.
Fluid friction determines micro-scale inertia in fluid. This means, for instance, blood cells swimming within blood encounter roughly the same amount of drag that a human would experience attempting to swim through molasses.
As the group reports in The Journal of Chemical Physics, from AIP Publishing, they applied and then extended a model of active filaments that includes these frictional hydrodynamic interactions, specifically as they relate to the speed and efficiency analysis of transporting colloidal particles.
By doing so, the researchers were able to design a realizable active transport engine, significantly advancing the state of the art for studying the crucial role of momentum conservation in active systems.
"Microorganisms have developed specialized organelles, such as cilia and flagella, to overcome the challenges of, in the words of Nobel laureate [Edward] Purcell, 'life at a low Reynolds number,'" said Raj Kumar Manna, a graduate student in the Department of Physics at the Indian Institute of Technology Madras. "Recent experiments demonstrated that flagella-like 'beating' could be achieved in vitro, proving it's possible to obtain a periodic 'beating' motion without complex biological regulation."
Combining this concept of biologically independent regulation with "successful synthesis of self-propelling, inorganic particles," he also said, allowed them to create a completely artificial microscopic transport system.
The group initially set out to study designs of such transport systems via computer simulation to find designs for their "ultimate synthesis" within the laboratory.
According to Manna, most of the concepts involved in their work are more than a century old, dating from the mid-1800s with mathematician George Stokes' work on the eponymous equations for slow viscous flow. Physicist Marian Smoluchowski then used that work in the early 1900s to compute the friction, or the so-called "hydrodynamic interaction," between spherical particles moving in a viscous fluid. "We applied these techniques to the new situation of swimming within a viscous fluid," said Manna.
With these techniques they showed that it's possible to transport colloidal cargo via synthetic active filaments. "We've provided a design for a fully biocompatible motility engine that can be put to a wide variety of uses," Manna said. And such variety is offered by a surprising finding.
"Speed and efficiency aren't related within these systems," said Manna. "As an analogy, consider the energy spent by a 100-meter sprinter and a marathon runner. For a given budget of energy, it can be expended in a brief burst to achieve high speed, or more slowly to achieve long distances. This requires different design considerations, so our work provides a way of switching the behavior of our synthetic swimmer between these two modes."
The work has potential implications for procedures such as targeted drug delivery and insemination. More generally, the work is relevant for therapeutic interventions where defective motility in physiology is an issue.
"It's difficult to predict the timing for a computer design to be realized experimentally, and then go beyond clinical trials to medical use. But, if past development within this area is any guide, we expect some of these technologies to become feasible within a decade or so," Manna said.
As far as what's next for the group, Manna said, "We'd like to include increasing degrees of realism within our analysis to achieve an environment more akin to blood, look at geometries that are more like branched capillaries, explore designs for greater energy efficiency, and also collaborate more closely with experimentalists."
####
About American Institute of Physics
The Journal of Chemical Physics publishes concise and definitive reports of significant research in the methods and applications of chemical physics. See jcp.aip.org.
For more information, please click here
Contacts:
AIP Media Line
301-209-3090
Copyright © American Institute of Physics
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Possible Futures
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Nanomedicine
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Nanobiotechnology
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Research partnerships
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |