Home > Press > Shedding light on the formation of nanodroplets in aqueous solutions of polar organics: A team of Russian researchers uses laser light in two different ways to understand the dynamics of polar organic liquids, dissolved in water
Abstract:
A team of researchers in Russia worked together to shed new light on the heterogeneous nature of a polar organic liquid mixed with water. They used laser light as a tool in two ways, dynamic light scattering and phase microscopy, that allowed them to demonstrate the existence of stable nanodroplets of tetrahydrofuran (THF) in the bulk of aqueous electrolyte solutions and to develop a new theory that explains the spontaneous generation of heterogeneous nanoparticles in aqueous solutions of polar organic solutes in terms of nanodroplet formation due to "twinkling" hydrogen bonds.
Until recently it was thought that heterogeneous particles in binary mixtures of polar organic compounds could either be gas nanobubbles or giant stable molecular complexes, formed by the molecules of the solute or solvent. In an article appearing this week in the Journal of Chemical Physics, from AIP Publishing, a research team that included scientists from four different Moscow institutions used THF, which has infinite solubility in water and which, in aqueous solutions of low THF concentrations, allows observation of abnormally high scattering of light due to the spontaneous formation of some heterogeneous centers. Combining dynamic light scattering with a novel experimental technique called laser phase microscopy that can measure the refractive index of nanometer-scale objects in liquids in addition to their sizes, allowed them to determine that the nanodroplets being observed in aqueous mixtures of THF at low concentrations basically consist of pure THF.
"We began by repeating previous laser light scattering experiments using dynamic light scattering, which actually confirmed the abnormally high level of scattering in this concentration range; demonstrating that the scattering centers are nanometer-scale particles," said N.F. Bunkin, a professor from Bauman Moscow State Technical University. Since the two pure liquids are mixed in a fixed ratio, these particles should consist of THF and water in a certain ratio. The problem, however, is that the light scattering experiments cannot be used to determine the percentage of these components in the scattering particles. "We managed to solve this problem by using a unique phase microscope that we developed in collaboration with other scientists from Russia; one that can measure not only the size of the nanoparticles in a liquid, but also determine their refractive index," Bunkin explained. "We found that the refractive index of the scattering objects in THF-water mixtures practically coincides with the refractive index of pure THF though, in accordance with the reference data, such THF nanodroplets just cannot exist in the solution of such concentration."
However, for the research team the biggest challenge was not the experiment, or even the development of the new microscope, but the development of a theory that incorporated and explained their results. Intuition suggests that the spontaneous formation of pure THF droplets in dilute aqueous solutions should be somehow controlled by the parameters of the interaction of water and THF molecules via hydrogen bonding. Roughly speaking, the THF molecule can either form a hydrogen bond with a neighboring water molecule, or not. If quite a large amount of THF molecules, localized in a nanometer-scaled area of the liquid solution, simultaneously rupture the hydrogen bonds with the neighboring water molecules, a nanodroplet of pure THF is created in this area, a fact was observed in this experiment.
The team is already looking ahead to the next steps in this research. The kinetics of nanodroplet nucleation is still beyond the scope of their proposed model. They are planning to carry out similar experiments with aqueous solutions of organic liquids from the furan group which has different polarizability and dipole moments, and with solutions of water isotopes (H20, D20 and deuterium depleted water) that have different energies of intermolecular hydrogen bond and to explore the role of dissolved gas.
####
About American Institute of Physics
The Journal of Chemical Physics publishes concise and definitive reports of significant research in the methods and applications of chemical physics. See jcp.aip.org.
For more information, please click here
Contacts:
AIP Media Line
301-209-3090
Copyright © American Institute of Physics
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
Imaging
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Physics
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Finding quantum order in chaos May 17th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||