Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Precise quantum cloning: possible pathway to secure communication: Physicists create best ever quantum clones

Beam of light passing through splitter.
CREDIT
Lee Henderson/UNSW
Beam of light passing through splitter. CREDIT Lee Henderson/UNSW

Abstract:
Physicists at The Australian National University (ANU) and University of Queensland (UQ) have produced near-perfect clones of quantum information using a new method to surpass previous cloning limits.

Precise quantum cloning: possible pathway to secure communication: Physicists create best ever quantum clones

Sydney, Australia | Posted on October 26th, 2016

A global race is on to use quantum physics for ultra-secure encryption over long distances according to Prof Ping Koy Lam, node director of the ARC Centre of Excellence for Quantum Computation and Communication Technology (CQC2T) at ANU.

The new cloning method uses high performance optical amplifiers to clone light encoded with quantum information -- it is possible this technique could allow quantum encryption to be implemented with existing fibre optic infrastructure.

"One obstacle to sending quantum information is that the quantum state degrades before reaching its destination. Our cloner has many possible applications, and could help overcome this problem to achieve secure long distance communication," said Prof Lam.

The laws of physics -- in particular the 'No Cloning Theorem' -- prevent high quality clones being produced with a 100 percent success rate. The team, led by Prof Lam, uses a probabilistic method to demonstrate that it's possible to produce clones that exceed theoretical quality limits. The method was initially proposed by CQC2T researchers led by Prof Timothy Ralph at UQ.

"Imagine Olympic archers being able to choose the shots that land closest to the target's centre to increase their average score," said Prof Ralph.

"By designing our experiment to have probabilistic outputs, we sometimes 'get lucky' and recover more information than is possible using existing deterministic cloning methods. We use the results closest to a 'bullseye' and discard the rest," he said.

quantum information is that the probabilistic method is permitted, and is useful in many crypto-communication situations, such as generating secret keys.

"Our probabilistic cloning method generates higher quality quantum clones than have ever been made before, with a success rate of about 5 percent. We can now create up to five clones of a single quantum state," said lead author Jing Yan Haw, ANU PhD researcher.

"We first encode information onto a light beam. Because this information is in a fragile quantum state, it is difficult to observe or measure," said Haw.

"At the heart of the demonstration is a 'noiseless optical amplifier'. When the amplification is good enough, we can then split a light beam into clones. 'Amplify-then-split' allows us to clone the light beam with minimal distortion, so that it can still be read with exquisite precision," said Prof Ralph.

Quantum cloning opens up important experimental possibilities as well as having applications in ultra-secure long distance quantum networks.

"One of the problems with quantum encryption is its limited communication range. We hope this technology could be used to extend the range of communication, and one day lead to impenetrable privacy between two communicating parties," said Prof Lam.

This latest achievement follows the success of fellow CQC2T researchers at ANU, who last month were the first to demonstrate self-stabilising stationary light.

####

For more information, please click here

Contacts:
Kristin O'Connell

61-293-857-551

Copyright © Centre of Excellence for Quantum Computation and Communication Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The quantum cloning results are published in Nature Communications:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Quantum communication

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Physics

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Finding quantum order in chaos May 17th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project