Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Unusual quantum liquid on crystal surface could inspire future electronics

Strange electron orbits form on the surface of a crystal in this image created using a theoretical data model. These orbits correspond to the electrons being in different 'valleys' of states, yielding new insights into an area of research called 'vallytronics,' which seeks alternative ways to manipulate electrons for future electronic applications.
CREDIT
Image courtesy of Ali Yazdani, Department of Physics, Princeton University
Strange electron orbits form on the surface of a crystal in this image created using a theoretical data model. These orbits correspond to the electrons being in different 'valleys' of states, yielding new insights into an area of research called 'vallytronics,' which seeks alternative ways to manipulate electrons for future electronic applications. CREDIT Image courtesy of Ali Yazdani, Department of Physics, Princeton University

Abstract:
For the first time, an experiment has directly imaged electron orbits in a high-magnetic field, illuminating an unusual collective behavior in electrons and suggesting new ways of manipulating the charged particles.

Unusual quantum liquid on crystal surface could inspire future electronics

Princeton, NJ | Posted on October 22nd, 2016

The study, conducted by researchers at Princeton University and the University of Texas-Austin was published Oct. 21, in the journal Science. The study demonstrates that the electrons, when kept at very low temperatures where their quantum behaviors emerge, can spontaneously begin to travel in identical elliptical paths on the surface of a crystal of bismuth, forming a quantum fluid state. This behavior was anticipated theoretically during the past two decades by researchers from Princeton and other universities.

"This is the first visualization of a quantum fluid of electrons in which interactions between the electrons make them collectively choose orbits with these unusual shapes," said Ali Yazdani, the Class of 1909 Professor of Physics at Princeton, who led the research.

"The other big finding is that this is the first time the orbits of electrons moving in a magnetic field have been directly visualized," Yazdani said. "In fact, it is our ability to image these orbits that allowed us to detect the formation of this strange quantum liquid."

Fundamental explorations of materials may provide the basis for faster and more efficient electronic technologies. Today's electronic devices, from computers to cellphones, use processors made from silicon. With silicon reaching its maximum capacity for information processing, researchers are looking to other materials and mechanisms.

One area of progress has been in two-dimensional materials, which allow control of electron motion by breaking the particles away from the constraints of the underlying crystal lattice. This involves moving electrons among "pockets" or "valleys" of possible states created by the crystal. Some researchers are working on ways to apply this process in an emerging field of research known as "valleytronics."

In the current work, the strange elliptical orbits correspond to the electrons being in different "valleys" of states. This experiment demonstrates one of the rare situations where electrons spontaneously occupy one valley or another, the researchers said.

The team at Princeton used a scanning tunneling microscope to visualize electrons on the surface of a bismuth crystal at extremely low temperatures where quantum behaviors can be observed. Because electrons are too small to be seen, the scanning tunneling microscope has a miniscule electrically charged needle that detects electrons as it scans the crystal surface.

Co-first authors Benjamin Feldman, an associate research scholar in Princeton's Department of Physics; Mallika Randeria, a graduate student in physics; and András Gyenis, a postdoctoral research associate in the Department of Electrical Engineering, conducted the experiments at Princeton. Huiwen Ji, a postdoctoral research associate in the Department of Chemistry, working with Robert Cava, Princeton's Russell Wellman Moore Professor of Chemistry, grew the exceptionally pure bismuth crystal.

Bismuth has relatively few electrons, which makes it ideal for watching what happens to a flow of electrons subjected to a high magnetic field. Despite its purity, the crystal Ji and Cava grew contained some defects. Roughly one atom was slightly out of place for every tens of thousands of atoms.

Normally, in the absence of the magnetic field, electrons in a crystal will flit from atom to atom. Applying a strong magnetic field perpendicular to the flow of electrons forces the electrons' paths to curve into orbit around a nearby defect in the crystal, like planets going around the sun. The researchers found that they could measure the properties, or wave functions, of these orbits, giving them an important tool for studying the two-dimensional soup of electrons on the surface of the crystal.

Due to the crystal's lattice structure, the researchers expected to see three differently shaped elliptical orbits. Instead the researchers found that all the electron orbits spontaneously lined up in the same direction, or "nematic" order. The researchers determined that this behavior occurred because the strong magnetic field caused electrons to interact with each other in ways that disrupted the symmetry of the underlying lattice.

"It is as if spontaneously the electrons decided, 'It would lower our energy if we all picked one particular direction in the crystal and deformed our motion in that direction,'" Yazdani said.

"What was anticipated but never demonstrated is that we can turn the electron fluid into this nematic fluid, with a preferred orientation, by changing the interaction between electrons," he said. "By adjusting the strength of the magnetic field, you can force the electrons to interact strongly and actually see them break the symmetry of the surface of the crystal by choosing a particular orientation collectively."

Spontaneous broken symmetries are an active area of study thought to underlie physical properties such as high-temperature superconductivity, which enables electrons to flow without resistance.

Prior to directly imaging the behavior of these electrons in magnetic fields, researchers had hints of this behavior, which they call a nematic quantum Hall liquid, from other types of experiments, but the study is the first direct measurement.

"People have been looking at these states in a bunch of different contexts and this experiment represents a new way of observing them," said Allan MacDonald, a professor of physics at the University of Texas-Austin who contributed theoretical understanding to the study along with graduate student Fengcheng Wu, who is now at Argonne National Laboratory. "I'd done some work on a similar system together with former graduate students, Xiao Li, who is now at the University of Maryland, and Fan Zhang, now at the University of Texas-Dallas. When Yazdani's group showed me what they saw, I immediately recognized that they had identified a state that we had predicted, but in a completely unexpected way. It was quite a happy surprise."

The study gives experimental evidence for ideas predicted over the past two decades, including theoretical work by Princeton Professor of Physics Shivaji Sondhi and others.

Eduardo Fradkin, a professor of physics at the University of Illinois at Urbana-Champaign, contributed, along with Steven Kivelson, a professor of physics at Stanford University, to early predictions of this behavior in a paper published in Nature in 1998. "What Yazdani's experiments give us is a more quantitative test to explore the collective property of the electrons in this material," said Fradkin, who was not involved in the current study. "This is something we made arguments for, and only now has it been confirmed in this particular material. For me, this is very satisfying to see."

###

Funding for the study was provided by the Gordon and Betty Moore Foundation, the U.S. Department of Energy, the National Science Foundation through the Princeton Center for Complex Materials, the U.S. Army Research Office, and the Eric and Wendy Schmidt Transformative Technology Fund at Princeton.

####

For more information, please click here

Contacts:
Catherine Zandonella

609-258-0541

Copyright © Princeton University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The study, "Observation of a nematic quantum Hall liquid on the surface of bismuth," was published Oct. 21 in the journal Science:

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Quantum Physics

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Quantum Computing

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Quantum nanoscience

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project