Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Highly conductive and pure gold nanostructures grown by electron beam induced deposition

Abstract:
Recently, researchers from Vienna University of Technology (TU Wien) have discovered a novel way to fabricate pure gold nanostructures by the additive direct-write lithography called FEBID. This work will open a new door for applications of 3D gold devices. The work has recently been published in nature publication group’s journal, Scientific Report, on September 26, 2016.

Highly conductive and pure gold nanostructures grown by electron beam induced deposition

Vienna, Austria | Posted on October 17th, 2016

Gold is not only a noble metal of exceptional beauty, but also a highly desired material for functional nanostructures. Especially patterned gold nanostructures are key enabling structures in plasmonic devices, for biosensors with immobilized antibodies and as electrical contacts. For decades the fabrication of pure gold nanostructures on non-planar surfaces as well as of 3-dimensional gold nanostructures has been the bottleneck. Up to now only 2-dimensional gold nanostructures on planar surfaces were achievable by resist based lithography.

Focused electron beam induced deposition (FEBID) is a mask-less, resist-less method that can fabricate custom-designed 2D and 3D nanostructures in a single process step. The principle is the local decomposition of a metalorganic precursor by the focused electron beam of an electron microscope. It has been recently demonstrated that FEBID can be used for 3D nano-manufacturing of most complex 3D structures – just like a 3D-printer on the nanoscale (ACS Nano 10 (6), 6163 (2016). With a resolution limit of 1 nm, FEBIP was shown beating other existing nanofabrication methods (Nano Letters 5 (7), 1303 (2005)). To get the material purity right was the final obstacle of FEBID, as the electron-induced decomposition of metalorganic precursors has typically yielded metals with high carbon contaminations. This last bottleneck on the road to custom-designed, pure gold nanostructures has been overcome as described in the work on “Highly conductive and pure gold nanostructures grown by electron beam induced deposition” published in Scientific Reports 6, 34003 (2016).

While conventional FEBID gold deposition usually contains about 70 atomic % carbon and only 30 atomic % gold, a new approach developed by a research group lead by Dr. Heinz Wanzenboeck at TU Wien has allowed to fabricate pure gold structures by in-situ addition of an oxidizing agent during the gold deposition. According to Dr. Wanzenboeck, “The whole community was working hard for the last 10 years to directly deposit pure gold nanostructures.” At last the group’s expertise in engineering and chemical reactions paid off and direct deposition of pure gold was successful. “It’s a bit like discovering the legendary philosopher’s stone that turns common, ignoble material into gold” joked Dr. Wanzenboeck.

This deposited pure gold structure exhibits extremely low resistivity near that of bulk gold. Generally, a FEBID gold structure has a resistivity around 1-Ohm-cm which is about 1 million times worse than the resistivity of purest bulk gold. However, this specially enhanced FEBID process produces a resistivity of 8.8 micro-Ohm-cm which is only a factor 4 away from the bulk resistivity of purest gold (2.4 micro-Ohm-cm).

The authors of the paper Dr. Mostafa Moonir Shawrav and Dipl.Ing. Philipp Taus stated, “This highly conductive and pure gold structure will open a new door for novel nanoelectronic devices. For example, it will be easier to produce pure gold structures for nanoantennas and biomolecule immobilization which will change our everyday life”. Dr. Shawrav added “it is remarkable how a regular SEM (Scanning Electron Microscope) nowadays can deposit nanostructures compared to 20 years back when it was only a characterization device”. And with pure gold direct deposition available now, he expects nanodevices to be deposited directly and utilized in many different applications for technological revolution. Concluding, this work is a giant leap forward for 3D nano-printing of gold structures which will be the core part of nanoplasmonics and bioelectronics devices.

The work is funded by Austrian Science Fund (P24093). The article is freely accessible via: http://www.nature.com/articles/srep34003. For more information about the bionanobeam research group, please visit: http://bionano.eu/ or contact any of the following authors.

####

For more information, please click here

Contacts:
Ass.Prof. Dr. Heinz D. Wanzenboeck

Phone: +43-1-58801-36243
Web: bionano-tuwien.org

Dr. Mostafa Moonir Shawrav, FRMS

Phone: +43-1-58801-36235
Web: bionano-tuwien.org

Copyright © Scientific Reports 6, Article number: 34003

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

3D & 4D printing/Additive-manufacturing

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Fiber sensing scientists invent 3D printed fiber microprobe for measuring in vivo biomechanical properties of tissue and even single cell February 10th, 2023

3D-printed decoder, AI-enabled image compression could enable higher-res displays December 9th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project