Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer

Abstract:
Epidermal growth factor plays a critical role in breast malignancies by enhancing cell proliferation, invasion, angiogenesis and metastasis. Epithelial-mesenchymal transition (EMT) is a crucial process by which epithelial cells lose polarity and acquire migratory mesenchymal properties. Gold nanoparticles are an efficient drug delivery vehicle for carrying chemotherapeutic agents to target cancer cells and quercetin is an anti-oxidative flavonoid known with potent anti-malignant cell activity.
MATERIALS AND METHODS:

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer

Chennai, India | Posted on September 27th, 2016

Cell viability was assessed by MTT assay, and protein expression was examined by Western blotting and immunocytochemistry. Cell invasion was monitored using invasion chambers, and cell migration was analysed by scratch wound-healing assay. In vitro and ex vivo angiogenesis studies were performed by capillary-like tube formation assay and chick embryo angiogenesis assay (CEA). 7,12-dimethylbenz(a)anthracene (DMBA) induced mammary carcinoma in Sprague-Dawley rats.

RESULTS:
We observed a significant reduction in protein expression of vimentin, N-cadherin, Snail, Slug, Twist, MMP-2, MMP-9, p-EGFR, VEGFR-2, p-PI3K, Akt and p-GSK3β, and enhanced E-cadherin protein expression in response to AuNPs-Qu-5 treatment. AuNPs-Qu-5 inhibited migration and invasion of MCF-7 and MDA-MB-231 cells compared to free quercetin. AuNPs-Qu-5-treated HUVECs had reduced cell viability and capillary-like tube formation. In vitro and in vivo angiogenesis assays showed that AuNPs-Qu-5 suppressed tube and new blood vessel formation. Treatment with AuNPs-Qu-5 impeded tumour growth in DMBA-induced mammary carcinoma in SD rats compared to treatment with free quercetin.

CONCLUSION:
Our results suggest that AuNPs-Qu-5 inhibited EMT, angiogenesis and metastasis of the breast cancer cells tested by targeting the EGFR/VEGFR-2 signalling pathway

####

For more information, please click here

Contacts:
Balakrishnan Solaimuthu
Phone: 9884940150

Copyright © Cell Proliferation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project