Home > Press > JPK’s NanoWizard® AFM is used to evaluate the risk of cardiovascular disease in patients at iMM, University of Lisbon
![]() |
Ana Filipa Guedes from the Santos Group at iMM University of Lisbon works with the JPK NanoWizard® AFM system |
Abstract:
JPK Instruments, a world-leading manufacturer of nanoanalytic instrumentation for research in life sciences and soft matter, reports on the use of their NanoWizard® AFM system at the Instituto de Medicina Molecular at the University of Lisbon.
Dr Nuno C Santos leads the Biomembranes and Nanomedicine group at the Institute of Molecular Medicine (iMM) at the University of Lisbon, Portugal. Driven by the fact that cardiovascular diseases are the leading cause of mortality worldwide, accounting for about one third of all deaths and that biomarkers for assessing cardiovascular risk still have a limited applicability, there is much potential for research into new solutions. High levels of fibrinogen, a protein essential for the blood clotting process, have been identified as a potential risk factor for these diseases and it is this topic that the group has applied atomic force microscopy (AFM) to study.
Applying a NanoWizard® AFM system from JPK Instruments, the group has evaluated the interaction between fibrinogen and erythrocytes from patients with chronic heart failure, understanding how fibrinogen influences the aggregation of these cells. Dr Santos takes up the story to date: “We showed that the force required to break the bond between fibrinogen and erythrocyte is higher in patients with chronic heart failure than in healthy donors. Erythrocytes from these patients also showed changes in their elasticity and behavior while in the blood stream. Subsequently, during a one-year clinical follow-up, it was found that patients, where a higher force was initially required to release the binding between fibrinogen and erythrocytes, were more likely to be hospitalized due to cardiovascular complications in the following 12 months. We have been able to demonstrate a connection between nanotechnology and the identification of cardiovascular problems.”
In this study, AFM-based methodology proved to be a promising nanotool to evaluate changes in the interaction between fibrinogen and human blood cells, pinpointing patients with increased cardiovascular risk. Fibrinogen-erythrocyte binding forces, measured at the single molecule level, are thus a potential biomarker for chronic heart failure severity and may eventually be used also for the clinical prognostic assessment of other cardiovascular diseases.
Describing why he chose the NanoWizard®, Dr Santos continued: “Atomic force microscopy-based force spectroscopy using the NanoWizard® II from JPK instruments was our first choice to study the interaction between fibrinogen and red blood cells and evaluated the cell elasticity in chronic heart failure disease. This has provided us with a robust and user-friendly system for this research.”
Lastly, the group has recently had a publication in Nature Nanotechnology. Entitled Atomic force microscopy as a tool to evaluate the risk of cardiovascular diseases in patients, the paper follows the work described here and reaches the conclusion that AFM is a promising tool to identify patients with increased risk for cardiovascular diseases.1
For more details about JPK's NanoWizard® AFM and its applications for the bio & nano sciences, please contact JPK on +49 30726243 500. Alternatively, please visit the web site: www.jpk.com/ or see more on Facebook: www.jpk.com/facebook and on You Tube: www.youtube.com/jpkinstruments.
Reference
1 Ana Filipa Guedes et al, Atomic force microscopy as a tool to evaluate the risk of cardiovascular diseases in patients; Nature Nanotechnology11, 687-692 (2016)doi:10.1038/nnano.2016.52
####
About JPK Instruments
JPK Instruments AG is a world-leading manufacturer of nanoanalytic instruments - particularly atomic force microscope (AFM) systems and optical tweezers - for a broad range of applications reaching from soft matter physics to nano-optics, from surface chemistry to cell and molecular biology. From its earliest days applying atomic force microscope (AFM) technology, JPK has recognized the opportunities provided by nanotechnology for transforming life sciences and soft matter research. This focus has driven JPK's success in uniting the worlds of nanotechnology tools and life science applications by offering cutting-edge technology and unique applications expertise. Headquartered in Berlin and with direct operations in Dresden, Cambridge (UK), Singapore, Tokyo, Shanghai (China), Paris (France) and Carpinteria (USA), JPK maintains a global network of distributors and support centers and provides on the spot applications and service support to an ever-growing community of researchers.
For more information, please click here
Contacts:
JPK Instruments AG
Colditzstrasse 34-36
Haus 13, Eingang B
Berlin 12099
Germany
T +49 30726243 500
F +49 30726243 999
www.jpk.com/
Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA
United Kingdom
T +44(0)1799 521881
M +44(0)7843 012997
www.talking-science.com/
Copyright © JPK Instruments
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Imaging
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Tools
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |