Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Clusters of Nanoparticles protect against high temperature creep and radiations

Abstract:
Next generation's nuclear reactors require materials that can resist higher temperature and radiations. The ODS steels are used as nuclear fuel cladding and structural materials. This is because the ODS steels are enforced with clusters of 5 nm size of Ti. Yttrium phase that can undergo second order transition to the superionic states.

Clusters of Nanoparticles protect against high temperature creep and radiations

Calgary, Canada | Posted on August 16th, 2016

Oxide­ dispersion ­strengthened steels (ODS) are the most promising structural materials for next generation nuclear energy systems because they exhibit good
radiations resistance to hardening, swelling and embrittlement. These protective properties are partly due to ( originate from) a clusters of nanometric and dense dispersion of complex oxides [1]. Hirata et al [2] recently confirmed that small Y- or Y-Ti non-stoichiometric oxide nano precipitate that are uniformly dispersed in the steel matrix ( so called nano-feature or NF) are responsible for reducing the creep rate by six order of magnitude at 650-900 C and contribute to the excellent tensile ductility and strength of the ODS steel. Furthermore, Hirata and co-workers [2] believe that these nano precipitate present extremely high stability at temperature close to 90% of the melting temperature (1400 C) and intense neutron radiation field. This unusual stability which are due to the presence of the nano precipitates is not in accordance with the thermodynamics and traditional materials theories. Hirata and co-workers [2] think that the structure and chemical feature of small
nano precipitate of size less than 5 nm are very important for understanding the effect of these nano precipitates on ODS steels. They used atom probe tomography (APT) which can give the chemical composition of the oxide nanoclusters with size less than 5 nm. Hirata and co-workers believe that because the nanoclusters are very small (roughly around 2 -5 nm), embedded in the magnetic bcc-Fe matrix and may have coherent relations with the matrix. Bringa and his co-workers [3] attributed such beneficial effect of these nano scale ( large surface to volume ratio) on ODS steels to be due to the addition of large amount of interfaces between the matrix and the nano scale precipitates. The mechanism proposed here is based on the fact that the fluorite structure[2] of these dense cluster of re-­enforcing non­-stoichiometric nanoparticles (Y(x)Ti(y)O(z) of size less than 5 nm) are able to undergo a phase transition to the super ionic state at high temperature and radiations.The super ionic state is characterized by maximum number density of defects ( almost like liquid but in solid state).


[1] Yamashita et al. J. Nuclear Materials 329­333, 377, 2004.

[2] Hirata et al., Nature Materials, 10, 922, 2011.
[3] E.M. Bringa, J.D. Mok, A. Caro et al. Nano Letters 12, 3751, 2012.

####

For more information, please click here

Contacts:
M. Reda
Phone: 4034673552
Fax: 4034673552

Copyright © Canadelectrochim

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Materials/Metamaterials/Magnetoresistance

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Energy

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project