Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > To Infinity and Beyond with Nanosatellites

The tree-like formations in this molten salt formed under the high-radiation of a transmission electron microscope beam; the jet of ions from the material could serve as a thruster for a nanosatellite
CREDIT: Michigan Tech, Kurt Terhune
The tree-like formations in this molten salt formed under the high-radiation of a transmission electron microscope beam; the jet of ions from the material could serve as a thruster for a nanosatellite

CREDIT: Michigan Tech, Kurt Terhune

Abstract:
Researchers at the University of Maryland and Michigan Technological University have operated a tiny proposed satellite ion rocket under a microscope to see how it works.

To Infinity and Beyond with Nanosatellites

Houghton, MI | Posted on August 10th, 2016

The rocket, called an electrospray thruster, is a drop of molten salt. When electricity is applied, it creates a field on the tip of the droplet, until ions begin streaming off the end. The force created by the rocket is less than the weight of a human hair, but in the vacuum of space it is enough to push a small object forward with a constant acceleration. Many of these tiny thrusters packed together could propel a spacecraft over great distances, maybe even to the nearest exoplanet, and they are particularly useful for Earth-orbiting nanosatellites, which can be as small as a shoe box. These thrusters are currently being tested on the European Space Agency's LISA Pathfinder, which hopes to poise objects in space so precisely that they would only be disturbed by gravitational waves.

But these droplet engines have a problem: sometimes they form needle-like spikes that disrupt the way the thruster works - they get in the way of the ions flowing outward and turn the liquid to a gel. Lyon B. King and Kurt Terhune, mechanical engineers at Michigan Tech, wanted to find out how this actually happens.

"The challenge is making measurements of features as small as a few molecules in the presence of a strong electric field, which is why we turned to John Cumings at the University of Maryland," King says, explaining Cumings is known for his work with challenging materials and that they needed to look for a needle in a haystack. "Getting a close look at these droplets is like looking through a straw to find a penny somewhere on the floor of a room--and if that penny moves out of view, like the tip of the molten salt needles do--then you have to start searching for it all over again."

At the Advanced Imaging and Microscopy Lab at the University of Maryland, Cumings put the tiny thruster in a transmission electron microscope - an advanced scope that can see things down to millionths of a meter. They watched as the droplet elongated and sharpened to a point, and then started emitting ions. Then the tree-like defects began to appear.

The researchers say that figuring out why these branched structures grow could help prevent them from forming. The problem occurs when high-energy electrons, like those used in the microscope's imaging beam, impact the fluid causing damage to the molecules that they strike. This damages the molten salt's molecular structure, so it thickens into a gel and no longer flows properly.

"We were able to watch the dendritic structures accumulate in real time," says Kurt Terhune, a mechanical engineering graduate student and the study's lead author. "The specific mechanism still needs to be investigated, but this could have importance for spacecraft in high-radiation environments."

He adds that the microscope's electron beam is more powerful than natural settings, but the gelling effect could affect the lifetime of electrospray thrusters in low-Earth and geosynchronous orbit.

####

For more information, please click here

Contacts:
Allison Mills

906-487-2343

Copyright © Michigan Technological University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Aerospace/Space

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project