Home > Press > New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time
Jarek Wosik led the development of a high-temperature superconducting coil that allows MRI scanners to produce higher-resolution images in a shorter period of time. |
Abstract:
A multidisciplinary research team led by University of Houston scientist Jarek Wosik has developed a high-temperature superconducting coil that allows magnetic resonance imaging (MRI) scanners to produce higher resolution images or acquire images in a shorter time than when using conventional coils.
Wosik, a principal investigator at the Texas Center for Superconductivity at UH, said test results show the new technology can reveal brain structures that aren't easily visualized with conventional MRI coils. He also is a research professor in the UH Department of Electrical and Computer Engineering.
The cryo-coil works by boosting the signal-to-noise ratio (SNR) -- a measure of the strength of signals carrying useful information -- by a factor of two to three, compared with conventional coils. SNR is critical to the successful implementation of high resolution and fast imaging.
Wosik said the cryo-coil reveals more details than a conventional coil because of its enhanced SNR profile. Where a conventional coil does not have enough sensitivity to "see," a superconducting coil can still reveal details. These details will remain hidden to conventional coils even when image acquisition is repeated endlessly.
For the initial tests, the probe was optimized for rat brain imaging, useful for biomedical research involving neurological disorders. But it also has direct implications for human health care, Wosik said.
"Research in animal models yields critical information to improve diagnosis and treatment of human diseases and disorders," he said. "This work also has the potential to clearly benefit clinical MRI, both through high quality imaging and through shortening the time patients are in the scanner."
Results from preliminary testing of the 7 Tesla MRI Cryo-probe were presented at the International Symposium of Magnetic Resonance in Medicine annual meeting in May. The coil can be optimized for experiments on living animals or brain tissue samples, and researchers said they demonstrated an isotropic resolution of 34 micron in rat brain imaging. In addition to its use in MRI coils, superconductivity lies at the heart of MRI scanning systems, as most high-field magnets are based on superconducting wire.
In addition to Wosik, collaborators on the project include Ponnada A. Narayana, director of the Magnetic Resonance Imaging Center and a professor in the Department of Diagnostic and Interventional Imaging at the University of Texas Health Science Center at Houston; Kurt H. Bockhorst, senior research scientist at UT Houston; Kuang Qin, a graduate student working with Wosik; and I-Chih Tan, assistant professor in the Department of Neuroscience at Baylor College of Medicine.
"Compared to corresponding standard room temperature MRI coils, the performance of the cooled normal metal and/or the high-temperature superconducting receiver coils lead either to an increase in imaging resolution and its quality, or to a very significant reduction in total scan time," Wosik said.
####
For more information, please click here
Contacts:
Jeannie Kever
713-743-0778
Copyright © University of Houston
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Imaging
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Superconductivity
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||