Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Graphene-infused packaging is a million times better at blocking moisture

Making packaging nearly impenetrable to water could vastly improve the lifetimes of moisture-sensitive products. 
Credit: Medioimages/Photodisc/Thinkstock
Making packaging nearly impenetrable to water could vastly improve the lifetimes of moisture-sensitive products.

Credit: Medioimages/Photodisc/Thinkstock

Abstract:
Plastic packaging might seem impenetrable -- and sometimes nearly impossible to remove -- but water molecules can still pass through. And this permeability to moisture can limit the lifespan of a product. To better protect goods such as electronics and medicines, scientists have developed a new kind of packaging that incorporates a single layer of graphene. They report their material, which reduces by a million fold how much water can get through, in the journal ACS Nano.

Graphene-infused packaging is a million times better at blocking moisture

Washington, DC | Posted on July 15th, 2016

These days, packaging is everywhere, sometimes even on individual fruits or vegetables. Wrapping products from food to electronics in plastic films protects them from dust, bacteria and to some extent water. But to maximize the lifetime of a moisture-sensitive device such as an organic light-emitting diode for more than a year, for example, the packaging must restrict water vapor from entering at a rate of less than 10-6 grams per square meter every day, according to Praveen C. Ramamurthy. Today's typical packaging is far from achieving that goal. Ramamurthy and colleagues wanted to see whether adding graphene to flexible polymer films would help.

The researchers synthesized a single layer of graphene by chemical vapor deposition and using a simple and scalable process, transferred the graphene to a polymer film. Water vapor permeated the material at the target rate of less than 10-6 grams per square meter per day. An accelerated aging test showed that an organic photovoltaic device wrapped in the graphene-infused film would have a lifetime of more than 1 year compared to less than 30 minutes if packaged in the polymer without the graphene.

###

The authors acknowledge funding from the Solar Energy Research Institute for India and the United States (SERIIUS): U.S.-India Partnership to Advance Clean Energy-Research (PACE-R), which is supported by the U.S. Department of Energy and the Indian Department of Science and Technology.

####

About American Chemical Society
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With nearly 157,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

For more information, please click here

Contacts:
Michael Bernstein

202-872-6042

Praveen C. Ramamurthy, Ph.D.
Centre for Nanoscience and Engineering
and the Department of Materials Engineering
Indian Institute of Science
Bangalore, India

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

DOWNLOAD FULL-TEXT ARTICLE - "Million-Fold Decrease in Polymer Moisture Permeability by a Graphene Monolayer":

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Graphene/ Graphite

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Govt.-Legislation/Regulation/Funding/Policy

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Possible Futures

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Materials/Metamaterials/Magnetoresistance

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Food/Agriculture/Supplements

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project