Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state

Alexander Ulanov is in the Laboratory of Quantum Optics, Russian Quantum Center.
CREDIT: Russian Quantum Center
Alexander Ulanov is in the Laboratory of Quantum Optics, Russian Quantum Center.

CREDIT: Russian Quantum Center

Abstract:
Physicists from the Russian Quantum Center (RQC), MIPT, the Lebedev Physical Institute, and L'Institut d'Optique (Palaiseau, France) have devised a method for creating a special quantum entangled state. This state enables producing a high-precision ruler capable of measuring large distances to an accuracy of billionths of a metre. The results of the study have been published in Nature Communications.

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state

Moscow, Russia | Posted on June 25th, 2016

"This technique will enable us to use quantum effects to increase the accuracy of measuring the distance between observers that are separated from one another by a medium with losses. In this type of medium, quantum features of light are easily destroyed," says Alexander Lvovsky, a co-author of the paper, the head of the RQC scientific team that conducted the research, and a professor of the University of Calgary.

The study focused on what is known as N00N states of photons in which there is a superposition of spatial positions of not one, but several photons. That is, a multiphoton laser pulse is at two points at the same time.

These states could be important for metrology, or, more precisely, they could significantly improve the capabilities of optical interferometers, such as those used to detect gravitational waves in the LIGO project.

In optical interferometers, laser beams from two mirrors "mix" with each other and interference occurs - the light waves either strengthen or cancel each other - depending on the exact position of the mirrors. This allows their microscopic displacements to be measured, because the distance between the interferometric fringes is the same as the wavelength - approximately 0.5-1 microns. However, many experiments require even greater precision. Detecting gravitational waves, for example, required measurements of displacements comparable to the diameter of a proton.

"Though such extremely high sensitivities have already be achieved, N00N states could be useful to increase the accuracy even further, because the interference fringes they create are much narrower than the wavelength." - says Philippe Grangier, another co-author of the study, a professor of L'Institut d'Optique.

"The problem is that N00N states are extremely susceptible to losses. When travelling over long distances -in either atmospheric or fiber channels - a light beam inevitably loses intensity. For ordinary, classical light, that does not matter too much. But if an entangled state of light passes through a medium with even small losses, it "disentangles" and is no longer useful," says Lvovsky.

He and his colleagues found a way of solving this problem.

"There is a phenomenon called entanglement swapping. Suppose that Alice and Bob have an entangled state. If I then take one part of Alice's entangled state, and another part from Bob, and I do a joint measurement on them, the remaining parts of Alice's and Bob's states will also become entangled even though they never interacted" says Lvovsky.

"In our experiment conducted at the RQC laboratory, Alice and Bob create two entangled states. The send one of the parts to a medium with losses, which in our experiment is simulated by darkened glass. A third observer, midway between Alice and Bob, conducts joint measurements on these parts. This results in entanglement swapping: the remaining parts of Alice and Bob's states are in the N00N state. And as these parts did not experience losses, they exhibit their quantum properties in full," explains the lead author of the paper, Alexander Ulanov, a researcher at RQC and MIPT postgraduate student.

According to him, the level of losses in the glass corresponds to an atmospheric thickness of approximately 50 kilometres. The same method could also be used for light propagating in vacuum, either in the current ground-based interferometers such as LIGO, or in future space-based ones such as LISA.

####

For more information, please click here

Contacts:
Sergey Divakov

7-925-834-0978

Copyright © Moscow Institute of Physics and Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Quantum Physics

Energy transmission in quantum field theory requires information September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Physics

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Aerospace/Space

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project