Home > Press > The use of nanoparticles and bioremediation to decontaminate polluted soils
![]() |
Abstract:
The Basque Institute of Agricultural Research and Development Neiker-Tecnalia is currently exploring a strategy to remedy soils contaminated by organic compounds containing chlorine (organochlorine compounds). The innovative process consists of combining the application of zero-iron nanoparticles with bioremediation techniques. The companies Ekotek and Dinam, the UPV/EHU-University of the Basque Country and Gaiker-IK4 are also participating in this project known as NANOBIOR.
Soils affected by organochlorine compounds are very difficult to decontaminate. Among these organochlorine compounds feature some insecticides mainly used to control insect pests, such as DDT, aldrin, dieldrin, endosulfan, hexachlorocyclohexane, toxaphene, chlordecone, mirex, etc. It is a well-known fact that the use of many of these insecticides is currently banned owing to their environmental impact and the risk they pose for human health.
To degrade organochlorine compounds (organic compounds whose molecules contain chlorine atoms) present in the soil, the organisations participating in the project are proposing a strategy based on the application, initially, of zero-iron nanoparticles that help to eliminate the chlorine atoms in these compounds. Once these atoms have been eliminated, the bioremediation is carried out (a process in which microorganisms, fungi, plants or enzymes derived from them are used to restore an environment altered by contaminants to its natural state).
The bioremediation process being developed by Neiker-Tecnalia comprises two main strategies: biostimulation and bioaugmentation. The first consists of stimulating the bacteria already present in the soil by adding nutrients, humidity, oxygen, etc. Bioaugmentation is based on applying bacteria with the desired degrading capability to the soil. As part of this process, Neiker-Tecnalia collects samples of soils contaminated by organochlorine compounds and in the laboratory isolates the species of bacteria that display a greater capacity for degrading these contaminants. Once the most interesting strains have been isolated, the quantity of these bacteria are then augmented in the laboratory and the soil needing to be decontaminated is then inoculated with them.
Bank of effective strains to combat organochlorines
The first step for Neiker-Tecnalia is to identify bacterial species capable of degrading organochlorine compounds in order to have available a bank of species of interest for use in bioremediation. This bank will be gathering strains collected in the Basque Country and will allow bacteria that can be used as a decontaminating element of soils to be made available.
The combining of the application of zero-iron nanoparticles and bioremediation constitutes a significant step forward in the matter of soil decontamination; it offers the added advantage of potentially being able to apply them in situ. So this methodology, which is currently in the exploratory phase, could replace other processes such as the excavation of contaminated soils so that they can be contained and/or treated. What is more, the combination of the two techniques makes it possible to reduce the decontamination times, which would take much longer if bioremediation is used on its own.
####
For more information, please click here
Contacts:
Irati Kortabitarte
34-943-363-040
Copyright © Elhuyar Fundazioa
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Food/Agriculture/Supplements
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023
Night-time radiative warming using the atmosphere November 17th, 2023
Environment
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Onion-like nanoparticles found in aircraft exhaust May 14th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Research partnerships
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |