Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Revisiting trajectories at the quantum scale: The role of statistics in quantum scale observation explains microscale behavior

Abstract:
There is a gap in the theory explaining what is happening at the macroscopic scale, in the realm of our everyday lives, and at the quantum level, at microscopic scale. In this paper published in EPJ D, Holger Hofmann from the Graduate School of Advanced Sciences of Matter at Hiroshima University, Japan, reveals that the assumption that quantum particles move because they follow a precise trajectory over time has to be called into question. Instead, he claims that the notion of trajectory is a dogmatic bias inherited from our interpretation of everyday experience at the macroscopic scale. The paper shows that trajectories only emerge at the macroscopic limit, as we can neglect the complex statistics of quantum correlations in cases of low precision.

Revisiting trajectories at the quantum scale: The role of statistics in quantum scale observation explains microscale behavior

Heidelberg, Germany | Posted on June 8th, 2016

The simple reason why it is wrong to assume that microscopic trajectories exist is because, in quantum mechanics, we can only approximately determine position and speed. This is due to a law of quantum physics, called the Heisenberg uncertainty principle, which prevents the experimental observation of trajectories and other continuous changes in time.

Hofmann shows that this uncertainty of time evolution is a result of the fundamental laws of motion. At the macroscopic limit, motion is described by a change in time along a trajectory of fixed energy. This relation between energy and time can be represented by an action. And this action is the origin of the mysterious effects of quantum coherent superimpositions and quantum interferences. The paper clarifies the role of actions by deriving equations for them that work equally well for quantum dynamics and for classical trajectories.

The paper thus explains for the first time why Planck's fundamental constant (h-bar or ?) can be used to objectively separate and distinguish macroscopic experience from microscopic physics. Indeed, h-bar identifies a fundamental scale at which the approximate separation of a motion from the interactions needed to observe that motion breaks down. Planck's fundamental constant therefore identifies a fundamental scale where there is an effective cross-over from observable realities to quantum mechanical laws of causality, where the action appears as a quantum phase (i.e one of the many alternative phases for a quantum scale system).

####

For more information, please click here

Contacts:
Sabine Lehr

49-622-148-78336

Copyright © Springer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference: H. F. Hofmann (2016), On the fundamental role of dynamics in quantum physics, Eur. Phys. J. D 70:118, DOI 10.1140/epjd/e2016-70086-8:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Quantum Physics

Energy transmission in quantum field theory requires information September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Physics

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project