Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanotubes' 'stuffing' as is: A scientist from the Lomonosov Moscow State University studied the types of carbon nanotubes' 'stuffing'

Abstract:
Marianna Kharlamova (the Lomonosov Moscow State University Department of Materials Science) examined different types of carbon nanotubes' "stuffing" and classified them according to the influence on the properties of the nanotubes. The researcher's work was published in the high-impact journal Progress in Materials Science (impact factor -- 26.417).

Nanotubes' 'stuffing' as is: A scientist from the Lomonosov Moscow State University studied the types of carbon nanotubes' 'stuffing'

Moscow, Russia | Posted on June 2nd, 2016

An 87 pages long overview summarized the achievements of scientists in the field of the investigation of the electronic properties of single-walled carbon nanotubes (SWNTs). 'A detailed systematic study of 430 works was conducted, including 20 author's works, most of which had been published during the last 5 years, as the area under study is actively developing,' says Marianna Kharlamova. Apart from analytical systematization of the existing data, the author considers the theoretical basis of such studies -- the band theory of solids, which describes the interaction of the electrons in a solid.

The Many Faces of carbon: diamonds, balls, tubes

Carbon has several forms of existence (allotropic modifications) and can be found in different structures. It forms coal and carbon black, diamond, graphite, from which slate pencils are made, graphene, fullerenes and others. The whole organic chemistry is based on carbon which forms the molecular backbone. In diamonds the carbon atoms are kept on a strictly specified positions of the crystal lattice (which leads to its hardness). In graphite, the carbon atoms are arranged in hexagonal layers resembling honeycombs. Each layer is rather weakly interacting with the one above and the one below, so the material is easily separated into flakes which look to us like a pencil mark on the paper. If you take one such layer of hexagons and roll it into a tube, you get what is called a carbon nanotube.

A single-walled nanotube is a single rolled layer, and a multi-walled looks like the Russian 'matryoshka' doll, consisting of several concentric tubes. The diameter of each tube is a few nanometers, and the length is up to several centimeters. The ends of the tube are closed by hemispheric "caps" -- halves of fullerene molecules (fullerenes are another form of elemental carbon resembling a soccer ball stitched together from hexagons and pentagons). To make and fill the carbon nanotube is much more challenging than to stuff a wafer curl : to tailor these structures scientists use laser ablation techniques, thermal dispersion in an arc discharge or vapor deposition of hydrocarbons from the gas phase.

SWNT is no cookie

What is so special about them then? The properties of the graphite (electrical conductivity, ductility, metallic shine) remind metals, yet carbon nanotubes have quite different properties, which can be used in electronics (as components of prospective nanoelectronic devices -- gates, memory and data transmission devices etc.) and biomedicine (as containers for targeted drug delivery). The conductivity of carbon nanotubes can be changed depending on the orientation of the carbon hexagons relative to the tube axis, on what is included in its wall besides carbon, on which atoms and molecules are attached to the outer surface of the tube, and what it is filled with. Besides, single-walled carbon nanotubes (or SWNTs) are surprisingly tear-proof and refract light in a particular way.

Marianna Kharlamova was the first to classify types of nanotubes' "stuffing" according to their impact on the electronic properties of SWNTs. The author of the review considers the method of filling SWNTs as the most promising for tailoring their electronic properties.

'This is due to four main reasons,' Marianna Kharlamova says. 'Firstly, the range of substances that can be encapsulated in the SWNT channels is wide. Second, to introduce the substances of different chemical nature into the SWNT channels several methods have been developed: from the liquid phase (solution, melt), the gas phase, using plasma, or by chemical reactions. Third, as a result of the encapsulation process, high degree of the filling of SWNT channels can be achieved, which leads to the significant change in the electronic structure of nanotubes. Finally, the chemical transformation of the encapsulated substances allows controlling the process of tailoring the electronic properties of the SWNTs by selecting an appropriate starting material and conditions of the nanochemical reaction.'

The author herself conducted experimental studies of the filling of nanotubes with 20 simple substances and chemical compounds, revealed the influence of "stuffing" on the electronic properties of nanotubes, found the correlation between the temperature of the formation of inner tubes and the diameter of the outer tubes, and explained which factors influence the degree of the nanotubes' filling.

####

For more information, please click here

Contacts:
Vladimir Koryagin

Copyright © Lomonosov Moscow State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Chemistry

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Chip Technology

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project