Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanocars taken for a rough ride: Rice, NC State researchers test single-molecule cars in open air

Molecules that alight on a surface used to test nanocars look more like obstacles, according to researchers at Rice University and North Carolina State University testing the mobility of single-molecule cars in open air. Credit: Rice/North Carolina State
Molecules that alight on a surface used to test nanocars look more like obstacles, according to researchers at Rice University and North Carolina State University testing the mobility of single-molecule cars in open air.

Credit: Rice/North Carolina State

Abstract:
If you're driving a nanocar on the open road, things are bound to get sticky.

Rice University researchers who developed the first nanocars and colleagues at North Carolina State University found in recent tests that driving their vehicles in ambient conditions – exposed to open air, rather than a vacuum – got dicey after a time because the hydrophobic single-molecule cars stuck to the "road" and created what amounted to large speed bumps.

Nanocars taken for a rough ride: Rice, NC State researchers test single-molecule cars in open air

Houston, TX | Posted on June 1st, 2016

The findings were reported in the American Chemical Society's Journal of Physical Chemistry C.

The work by Rice chemist James Tour, NC State analytical chemist Gufeng Wang and their colleagues came as Rice prepares to take part in the first NanoCar Race in Toulouse, France, in October. Rice researchers are members of one of five international teams that plan to enter the competition.

Just like in the macro world, driving conditions are important for moving nanocars. Though the race will be run in an ultra-cold vacuum, the Rice researchers thought it wise to study how their latest model of nanocars would fare in a more natural setting.

"Our long-term goal is to make nanomachines that operate in ambient environments," Tour said. "That's when they will show potential to become useful tools for medicine and bottom-up manufacturing."

The newest generation of Rice nanocars features adamantane wheels that are slightly hydrophobic (water-repellent). Tour said some hydrophobicity is important to help keep the nanocars attached to a surface, but if the tires are too hydrophobic, the cars could become permanently immobilized. That is because hydrophobic things tend to stick together to minimize the amount of surface area that is in contact with water. Things that are hydrophilic, or water-liking, are more amenable to floating freely in water, Tour said.

In the latest Rice tests with the new tires, the nanocars were placed on surfaces that were either clean glass or glass coated with the polymer polyethylene glycol (PEG). Glass is the most frequently used substrate in nanocar research. Tour said the PEG-coated glass slides were used for their anti-fouling – nonsticky – properties, while the clean glass slides were treated with hydrogen peroxide so the hydrophobic wheels wouldn't stick.

He said the cars weren't so much being driven as undergoing "directed diffusion" in the tests. The point, he said, was to establish the kinetics of nanocar movement and understand the potential energy surface interaction between the car and surface over time.

"We want to know what makes a nanocar 'hit the brakes' and how much external energy we need to apply to start it moving again," he said.

The researchers let their cars run freely on a solid surface exposed to the air and tracked their movements by exciting embedded fluorescent tags.

The cars that moved via Brownian diffusion slowed down during the 24 hours that the slides were under observation. Tour said slides absorbed molecules from the air; as more and more of these molecules stuck to the surface, the slides become progressively more "dirty" throughout the experiment. Each nanocar is a single, complex molecule that contains just a few hundred atoms, so any other molecules they encounter on the roadway are huge obstacles that act like sticky foam. Each collision with one of these obstructions makes the nanocar slow down, and eventually the cars become permanently stuck.

Wang said that from an energy perspective -- that is, the energetic relationship between the molecular cars and those that make up the road -- molecules adsorbed from air generate many potential energy wells, just like puddles on the potential energy surface. These puddles can slow or permanently trap the nanocars.

Tests showed that nearly twice as many of the cars appeared to move on the nonsticking PEG slides, and all moved a little faster than those on the bare glass.

The researchers noted that they could not view the new models with scanning tunneling microscopes because those only work in a vacuum and they emit energy that could influence movement of the cars. For this reason, the researchers tagged each nanocar with a fluorescent marker and used confocal microscopes to track the cars' movements.

Co-authors of the paper are graduate students Victor Garcia-López and Pin-Lei Chu of Rice and graduate students Fang Chen and Tao Jin and postdoctoral scholar Bhanu Neupane of North Carolina State. Wang is an assistant professor of analytical chemistry at North Carolina State. Tour is the T.T. and W.F. Chao Chair in Chemistry as well as a professor of computer science and of materials science and nanoengineering at Rice.

The National Science Foundation and North Carolina State University supported the research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,910 undergraduates and 2,809 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for best quality of life and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to tinyurl.com/RiceUniversityoverview.

Follow Rice News and Media Relations via Twitter @RiceUNews.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

James M. Tour Group:

Gufeng Wang Group:

Wiess School of Natural Sciences:

NanoCar Race:

Related News Press

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Molecular Nanotechnology

Quantum pumping in molecular junctions August 16th, 2024

Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023

Scientist mimic nature to make nano particle metallic snowflakes: Scientists in New Zealand and Australia working at the level of atoms created something unexpected: tiny metallic snowflakes December 9th, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project