Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Thermal modification of wood and a complex study of its properties by magnetic resonance

Abstract:
Heat treatment has proved to be an effective method of improving some of the useful properties of wood. Recent developments of the technology have allowed to achieve, among other things, increased hydrophobic properties, better elasticity, and improved dimensional stability.

Thermal modification of wood and a complex study of its properties by magnetic resonance

Kazan, Russia Federation | Posted on May 26th, 2016

The corresponding chemical modifications depend on the heating regimes and the heating atmosphere and involve degradation of hemicellulose, changes of lignin and cellulose structures and chemical wood composition due to wood extractives loss. Researchers from Institute of Physics of Kazan Federal University, Institute of Perspective Research Tatarstan Academy of Sciences, and Nanoscience Department of Institut Neel conducted an investigation of various thermally treated wood species from the Central European part of Russia by magnetic resonance methods and revealed important changes in wood structure which were not available for observation by other methods.

Magnetic resonance methods are very well known as non-invasive techniques that allow to obtain information on structure and processes inside samples.

The selection of sapwood samples included Scots pine (Pinus sylvestris), birch (Betula pendula), Russian larch (Larix sibirica), Norway spruce (Picea abies) and small-leaved lime (Tilia cordata) were vacuum treated by heat at 220 C with various durations up to 8 h.

Electron paramagnetic resonance experiments revealed changes in the amount of free radicals in samples with the thermal treatment duration. They proved that free radicals EPR signal amplitude strongly depends on the moisture content of the wood samples and decreases as the latter value grows. Additional EPR experiments with absorbed ethanol indicate a possible connection of this effect with the electric dipole properties of H2O molecules.

Observed changes in pore size distributions by microscopy methods indicate cell wall shrinking and deformation. This process is indirectly related to the mass loss and formation of stable free radicals detected by EPR method.Since the correlation between the EPR signal amplitude and wood hardness was found for larch, lime and spruce, it is possible to use EPR technique to assess the wood hardness.

###

Authors are thankful to S.B. Orlinskii and T.M. Salikhov for the valuable help. The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University.

####

For more information, please click here

Contacts:
Yevgeniya Litvinova

7-843-233-7345

Copyright © Kazan Federal University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Physics

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Finding quantum order in chaos May 17th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project