Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Chemists use DNA to build the world's tiniest thermometer

Abstract:
Researchers at University of Montreal have created a programmable DNA thermometer that is 20,000x smaller than a human hair. This scientific advance reported this week in the journal Nano Letters may significantly aid our understanding of natural and human designed nanotechnologies by enabling to measure temperature at the nanoscale.

Chemists use DNA to build the world's tiniest thermometer

Montreal, Canada | Posted on April 27th, 2016

ver 60 years ago, researchers discovered that the DNA molecules that encode our genetic information can unfold when heated. "In recent years, biochemists also discovered that biomolecules such as proteins or RNA (a molecule similar to DNA) are employed as nanothermometers in living organisms and report temperature variation by folding or unfolding," says senior author Prof. Alexis Vallée-Bélisle. "Inspired by those natural nanothermometers, which are typically 20,000x smaller than a human hair, we have created various DNA structures that can fold and unfold at specifically defined temperatures."

One of the main advantages of using DNA to engineer molecular thermometers is that DNA chemistry is relatively simple and programmable. "DNA is made from four different monomer molecules called nucleotides: nucleotide A binds weakly to nucleotide T, whereas nucleotide C binds strongly to nucleotide G," explains David Gareau, first author of the study. "Using these simple design rules we are able to create DNA structures that fold and unfold at a specifically desired temperature." "By adding optical reporters to these DNA structures, we can therefore create 5 nm-wide thermometers that produce an easily detectable signal as a function of temperature," adds Arnaud Desrosiers, co-author of this study.

These nanoscale thermometers open many exciting avenues in the emerging field of nanotechnology, and may even help us to better understand molecular biology. "There are still many unanswered questions in biology," adds Prof. Vallée-Bélisle, "For example, we know that the temperature inside the human body is maintained at 37° C, but we have no idea whether there is a large temperature variation at the nanoscale inside each individual cell." One question currently under investigation by the research team is to determine whether nanomachines and nanomotors developed by nature over millions years of evolution also overheat when functioning at high rate. "In the near future, we also envision that these DNA-based nanothermometers may be implement in electronic-based devices in order to monitor local temperature variation at the nanoscale," concludes Prof. Vallée-Bélisle.

###

This research was supported by the Natural Sciences and Engineering Research Council of Canada. Alexis Vallée-Bélisle of the University of Montreal's Department of Chemistry and Department of Biochemistry published "Programmable, quantitative, DNA-base nanothermometers," in Nano Letters, April 27th 2016.

####

About University of Montreal
The University of Montreal is known officially as Université de Montréal.

For more information, please click here

Contacts:
Julie Gazaille

514-343-6796

Copyright © University of Montreal

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project