Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Tumble-proof cargo transporter in biological cells: New model shows how collective transport by synthetic nanomotors along biopolymer filaments can be effectively directed

Abstract:
Ever wondered how a molecular nanomotor works when repairing DNA or transporting material such as organelles in the cell? Typically, nanomotors move along biopolymer filaments to go about their duties in the cell. To do so, they use the energy of chemical reactions derived from their surroundings to propel themselves. In a new study published in EPJ E, Mu-Jie Huang and Raymond Kapral from the University of Toronto in Ontario, Canada show that small synthetic motors can attach to polymeric filaments and -- unlike what previous studies showed -- move along without changing either their shape or the direction in which they set out to move. This makes it possible to effectively deliver the substances they transport, such as anti-cancer drugs or anti-pollutants.

Tumble-proof cargo transporter in biological cells: New model shows how collective transport by synthetic nanomotors along biopolymer filaments can be effectively directed

Heidelberg, Germany | Posted on April 13th, 2016

The team has designed these nanomotors to move using the spatial variations of the concentrations of chemical species that they produce themselves by means of chemical reactions on their surfaces. The main improvement brought by this study's findings is that even very small synthetic motors -- possibly on the molecular scale of Angstroms, one ten-billionth of a meter -- can operate efficiently without suffering from rapid tumbling and loss of initial direction.

The authors studied the motions of these nanomotors on a filament surrounded by solvent by creating a coarse-grained level biomimetic model featuring all chemical species as particles - namely, solvent molecules, the molecular building blocks of the filament and the motors themselves. The advantage: this approach accounts for disturbances stemming from the random motions of the solvent molecules and for macroscopic solvent fluid flows accompanying the motor motion.

They found that the local concentration of catalytic product helping fuel their movement leads to a reversal of the direction of the collective movement of nanomotors, provided that they are in high enough concentration. The work promises to stimulate further research on directed cargo transport.

####

For more information, please click here

Contacts:
Sabine Lehr

49-622-148-78336

Copyright © Springer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference: Collective dynamics of diffusiophoretic motors on a filament. M-J. Huang and R. Kapral (2016), Eur. Phys. J. E 39: 36, DOI 10.1140/epje/i2016-16036-3:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project