Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Advance may make quantum computing more practical: Feedback technique used on diamond 'qubits' could make quantum computing more practical

“Instead of having a classical controller to implement the feedback, we now use a quantum controller,” Paola Cappellaro (pictured) explains. “Because the controller is quantum, I don’t need to do a measurement to know what’s going on.”

Photo: Jose Mandojana
“Instead of having a classical controller to implement the feedback, we now use a quantum controller,” Paola Cappellaro (pictured) explains. “Because the controller is quantum, I don’t need to do a measurement to know what’s going on.”

Photo: Jose Mandojana

Abstract:
Quantum computers are largely hypothetical devices that could perform some calculations much more rapidly than conventional computers can. They exploit a property called superposition, which describes a quantum particle's counterintuitive ability to, in some sense, inhabit more than one physical state at the same time.

Advance may make quantum computing more practical: Feedback technique used on diamond 'qubits' could make quantum computing more practical

Cambridge, MA | Posted on April 7th, 2016

But superposition is fragile, and finding ways to preserve it is one of the chief obstacles to developing large, general-purpose quantum computers. In today's Nature, MIT researchers describe a new approach to preserving superposition in a class of quantum devices built from synthetic diamonds. The work could ultimately prove an important step toward reliable quantum computers.

In most engineering fields, the best way to maintain the stability of a physical system is feedback control. You make a measurement -- the current trajectory of an airplane, or the temperature of an engine -- and on that basis produce a control signal that nudges the system back toward its desired state.

The problem with using this technique to stabilize a quantum system is that measurement destroys superposition. So quantum-computing researchers have traditionally had to do without feedback.

"Typically, what people do is to use what's called open-loop control," says Paola Cappellaro, the Esther and Harold Edgerton Associate Professor of Nuclear Science and Engineering at MIT and senior author on the new paper. "You decide a priori how to control your system and then apply your controller and hope for the best -- that you knew enough about your system that the control you applied will do what you thought it should. Feedback should be more robust, because it lets you adapt to what's going wrong."

In the Nature paper, Cappellaro and her former PhD student Masashi Hirose, who graduated last year and is now with McKinsey and Company in Tokyo, describe a feedback-control system for maintaining quantum superposition that requires no measurement. "Instead of having a classical controller to implement the feedback, we now use a quantum controller," Cappellaro explains. "Because the controller is quantum, I don't need to do a measurement to know what's going on."

Vacant expression

Cappellaro and Hirose's system uses a so-called nitrogen-vacancy center in diamond. A pure diamond consists of carbon atoms arranged in a regular latticework structure. If a carbon nucleus is missing from the lattice where one would be expected, that's a vacancy. If a nitrogen atom takes the place of a carbon atom in the lattice, and it happens to be adjacent to a vacancy, that's a nitrogen-vacancy (NV) center.

Associated with every NV center is a group of electrons from the adjacent atoms, which, like all electrons, have a property called spin that describes their magnetic orientation. When subjected to a strong magnetic field -- from, say, a permanent magnet positioned above the diamond -- an NV center's electronic spin can be up, down, or a quantum superposition of the two. It can thus represent a quantum bit, or "qubit," which differs from an ordinary computer bit in its ability to take on not just the values 1 or 0, but both at the same time.

NV centers have several advantages over other candidate qubits. They're an intrinsic feature of a physical structure, so they dispense with the complex hardware for trapping ions or atoms that other approaches require. And NV centers are natural light emitters, which makes it relatively easy to read information from them. Indeed, the light particles emitted by an NV center may themselves be in superposition, so they provide a way to move quantum information around.

Local control

Like electrons, atomic nuclei have spin, and Cappellaro and Hirose use the spin state of the nitrogen nucleus to control the NV center's electronic spin. First, a dose of microwaves puts the electronic spin into superposition. Then a burst of radio-frequency radiation puts the nitrogen nucleus into a specified spin state.

A second, lower-power dose of microwaves "entangles" the spins of the nitrogen nucleus and the NV center, so that they become dependent on each other. At this point, the NV qubit could, together with other qubits, be enlisted to perform a computation. But in their experiments, Cappellaro and Hirose were evaluating a single qubit, so they could test only the most rudimentary computational operation: the not gate, which flips a bit's value.

Because the spins of the nitrogen nucleus and the NV center are entangled, if anything goes wrong during the computation, it will be reflected in the spin of the nitrogen nucleus.

After the computation is performed, a third dose of microwaves -- whose polarization is rotated relative to that of the second -- disentangles the nucleus and the NV center. The researchers then subject the system to a final sequence of microwave exposures. Those exposures are calibrated, however, so that their effect on the NV center depends on the state of the nitrogen nucleus. If an error crept in during the computation, the microwaves will correct it; if not, they'll leave the NV center's state unaltered.

In experiments, the researchers found that, with their feedback-control system, an NV-center quantum bit would stay in superposition about 1,000 times as long as it would without it.

####

For more information, please click here

Contacts:
Abby Abazorius

617-253-2709

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Quantum Physics

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Chip Technology

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Quantum Computing

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project