Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New laser technique promises super-fast and super-secure quantum cryptography

Abstract:
Researchers have developed a new method to overcome one of the main issues in implementing a quantum cryptography system, raising the prospect of a useable 'unbreakable' method for sending sensitive information hidden inside particles of light.

New laser technique promises super-fast and super-secure quantum cryptography

Cambridge, UK | Posted on April 7th, 2016

By 'seeding' one laser beam inside another, the researchers, from the University of Cambridge and Toshiba Research Europe, have demonstrated that it is possible to distribute encryption keys at rates between two and six orders of magnitude higher than earlier attempts at a real-world quantum cryptography system. The results are reported in the journal Nature Photonics.

Encryption is a vital part of modern life, enabling sensitive information to be shared securely. In conventional cryptography, the sender and receiver of a particular piece of information decide the encryption code, or key, up front, so that only those with the key can decrypt the information. But as computers get faster and more powerful, encryption codes get easier to break.

Quantum cryptography promises 'unbreakable' security by hiding information in particles of light, or photons, emitted from lasers. In this form of cryptography, quantum mechanics are used to randomly generate a key. The sender, who is normally designated as Alice, sends the key via polarised photons, which are sent in different directions. The receiver, normally designated as Bob, uses photon detectors to measure which direction the photons are polarised, and the detectors translate the photons into bits, which, assuming Bob has used the correct photon detectors in the correct order, will give him the key.

The strength of quantum cryptography is that if an attacker tries to intercept Alice and Bob's message, the key itself changes, due to the properties of quantum mechanics. Since it was first proposed in the 1980s, quantum cryptography has promised the possibility of unbreakable security. "In theory, the attacker could have all of the power possible under the laws of physics, but they still wouldn't be able to crack the code," said the paper's first author Lucian Comandar, a PhD student at Cambridge's Department of Engineering and Toshiba's Cambridge Research Laboratory.

However, issues with quantum cryptography arise when trying to construct a useable system. In reality, it is a back and forth game: inventive attacks targeting different components of the system are constantly being developed, and countermeasures to foil attacks are constantly being developed in response.

The components that are most frequently attacked by hackers are the photon detectors, due to their high sensitivity and complex design - it is usually the most complex components that are the most vulnerable. As a response to attacks on the detectors, researchers developed a new quantum cryptography protocol known as measurement-device-independent quantum key distribution (MDI-QKD).

In this method, instead of each having a detector, Alice and Bob send their photons to a central node, referred to as Charlie. Charlie lets the photons pass through a beam splitter and measures them. The results can disclose the correlation between the bits, but not disclose their values, which remain secret. In this set-up, even if Charlie tries to cheat, the information will remain secure.

MDI-QKD has been experimentally demonstrated, but the rates at which information can be sent are too slow for real-world application, mostly due to the difficulty in creating indistinguishable particles from different lasers. To make it work, the laser pulses sent through Charlie's beam splitter need to be (relatively) long, restricting rates to a few hundred bits per second (bps) or less.

The method developed by the Cambridge researchers overcomes the problem by using a technique known as pulsed laser seeding, in which one laser beam injects photons into another. This makes the laser pulses more visible to Charlie by reducing the amount of 'time jitter' in the pulses, so that much shorter pulses can be used. Pulsed laser seeding is also able to randomly change the phase of the laser beam at very high rates. The result of using this technique in a MDI-QKD setup would enable rates as high as 1 megabit per second, representing an improvement of two to six orders of magnitude over previous efforts.

"This protocol gives us the highest possible degree of security at very high clock rates," said Comandar. "It could point the way to a practical implementation of quantum cryptography."

####

For more information, please click here

Contacts:
Sarah Collins

44-012-237-65542

Copyright © University of Cambridge

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Quantum Physics

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

Physics

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Research partnerships

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project