Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Cost-effective production of hydrogen from natural resources

UNIST research team has developed a cost-effective and scalable technique for synthesizing SiNSs, using natural clay and salt. From left are Prof. Jae Sung Lee, Prof. Soojin Park, Doctoral researcher Jaegeon Ryu of UNIST, and Researcher Youn Jeong Jang of POSTECH.
CREDIT: UNIST
UNIST research team has developed a cost-effective and scalable technique for synthesizing SiNSs, using natural clay and salt. From left are Prof. Jae Sung Lee, Prof. Soojin Park, Doctoral researcher Jaegeon Ryu of UNIST, and Researcher Youn Jeong Jang of POSTECH.

CREDIT: UNIST

Abstract:
Owing to their unbeatable electro-optical properties and compatibility with existing silicon technology, silicon nanosheets (SiNSs) are one of most exciting recent discoveries. They have been the most promising candidate for use in various applications, such as in the process of manufacturing semiconductors and producing hydrogen.

Cost-effective production of hydrogen from natural resources

Ulsan, Korea | Posted on April 6th, 2016

A joint research team, led by Prof. Jae Sung Lee and Prof. Soojin Park of Energy and Chemical Engineering at UNIST, South Korea has developed a cost-effective and scalable technique for synthesizing SiNSs, using natural clay and salt. Through this research, UNIST has taken a major step towards mass production of this ground-breaking material with relatively low cost.

In their study, published in the current edition of NPG Asia Materials, the research team reported an all-in-one strategy for the synthesis of high-purity SiNSs through the high-temperature molten salt (for example, NaCl)-induced exfoliation and simultaneous chemical reduction of natural clays.

According to the team, these newly synthesized Si nanosheets are key components in the production of ever smaller electronic devices due to their ultrathin (thickness of ~5nm) body. Prof. Park states, "As the electrical and electronic devices are getting smaller and smaller, there is a great demand for manufacturing their individual componants to be nanoscale." He continues, "Our new technique uses inexpensive natural clays and salt for preparing high-quality nanosheets, thereby cutting down production costs greatly."

"Through the simultaneous molten-salt-induced exfoliation and chemical reduction of natural clay, both the salt and clay start to melt at a reaction temperature, ranging from 550°C to 700°C. The molten salt is, then, dissolved in the clay layers and disintegrated into individual nanosheets," said Mr. Jaegeon Ryu, a doctoral researcher in Prof. Soojin Park's lab and the first author of the study. He continues, "Using the metallothermic reduction, metallic oxides inside clays can be exchanged with silicon."

The team reports that these nanosheets have a high surface area and contain mesoporous structures derived from the oxygen vacancies in the clay. They add, "These advantages make the nanosheets a highly suitable photocatalyst with an exceptionally high activity for the generation of hydrogen from a water-methanol mixture."

###

This work has been supported by the Basic Science Research Program through the National Research Foundation (NRF) of Korea and has been funded by the Middle-Grade Researcher Supporting Program through the Korean Ministry of Science, ICT and Future Planning (MSIP).

####

For more information, please click here

Contacts:
JooHyeon Heo

82-522-171-223

Copyright © Ulsan National Institute of Science and Technology (UNIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Journal Reference

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Energy

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project