Home > Press > Researchers use 3-D printing to create structure with active chemistry
Abstract:
Many materials - sugars, thermoplastics, glass, metals, ceramics and more -- are used to produce 3D-printed figures, typically with expensive or custom-built 3D printers.
For the first time, researchers have demonstrated how to use commercial 3D printers to create a structure with active chemistry. Led by Matthew Hartings, American University chemistry professor, researchers created a chemically active 3D-printed structure that acts to mitigate pollution. A study outlining the process published online today in Science and Technology of Advanced Materials.
And it's OK to try this at home. The experiment, created with many off-the-shelf materials common to makers, hobbyists and home enthusiasts, puts the power of chemistry invention into the hands of people taking advantage of the 3D printing revolution.
The researchers designed a small structure the size of handheld sponge. They dispersed throughout plastic chemically active titanium dioxide (TiO2) nanoparticles. Using the same filament hobbyists use in the printing process of 3D-printed figures, researchers added the nanoparticles. Using a 3D thermoplastic printer, ubiquitous in manufacturing, the researchers printed a small, sponge-like plastic matrix.
Researchers had two questions: Would the nanoparticles stay active in the structure once printed? Created for pollution mitigation, would the matrix perform? The answers were yes.
Pollutants break down when natural light interacts with TiO2, which has potential applications in the removal of pollution from air, water and agricultural sources.
To demonstrate pollution mitigation, they placed the matrix in water and added an organic molecule (pollutant). The pollutant was destroyed. TiO2 also photocatalyzed the degradation of a rhodamine 6G in solution.
"It's not just pollution, but there are all sorts of other chemical processes that people may be interested in. There are a variety of nanoparticles one could add to a polymer to print," Hartings said.
One limitation of the research is that for the structure to print, the concentration of nanoparticles needed to be less than 10 percent of total mass of the structure. To have an efficient structure, a higher concentration could be needed, but depending on the need, 10 percent might be OK, Hartings said.
The structure printed for this study was a simple shape. Harnessing the power of 3D-printing, the researchers' next step will be to print many exotic shapes to understand how printed structure affects the chemical reactivity.
Because of the promising results, they've already started experimenting with different printed geometries to determine an optimal printed shape for applications that involve photocatalytic removal of environmental pollutants.
####
For more information, please click here
Contacts:
Rebecca Basu
202-885-5978
Copyright © American University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Chemistry
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
3D & 4D printing/Additive-manufacturing
Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023
Fiber sensing scientists invent 3D printed fiber microprobe for measuring in vivo biomechanical properties of tissue and even single cell February 10th, 2023
3D-printed decoder, AI-enabled image compression could enable higher-res displays December 9th, 2022
Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Environment
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
New method in the fight against forever chemicals September 13th, 2024
Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes
Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023
Simple ballpoint pen can write custom LEDs August 11th, 2023
Disposable electronics on a simple sheet of paper October 7th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||