Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Special topic: New unconventional superconductors and Weyl semimetal

Abstract:
Unconventional superconductivity and topological quantum phenomena are two frontier research directions of condensed matter physics. A special topic published in 2016(5) issue of Science China Physics, Mechanics & Astronomy collected several works covering important progress in these two directions. Superconductivity was discovered in Hg in 1911 by the group of Kamerling Onnes in Leiden (Holland). The mystery of superconductivity was, however, not uncovered until 1957 when Bardeen-Cooper-Schrieffer (BCS) proposed the electron-phonon coupling picture. In the BCS picture, two electrons near the Fermi surface with opposite momenta and spins will form a bound state by exchanging phonons. Such charge carriers are called as Cooper pairs. Cooper pairs will condense into a low-energy state, which exhibits macroscopic phase coherence with, of course, the presence of a superfluid. The validity of this theory is, however, quite limited, and it cannot explain superconductivity in many unconventional superconductors, such as cuprates, iron pnictides, and iron selenides.

Special topic: New unconventional superconductors and Weyl semimetal

Beijing, China | Posted on March 28th, 2016

On the topic of unconventional superconductivity, four works were presented in this special collection. The first work [1] concerns the effect of impurity scattering on superconductivity in K2Cr3As3, an unconventional superconductor discovered in 2015 by the same group here. This superconductor may contain a one-dimensional superfluid channel and possess the rarely reported triplet superconductivity. The report by the group of Prof. Guang-Han Cao from Zhejiang University deals with the effect of impurity resulting from dopants, which may reveal the fundamental feature of the pairing manner. They found the suppression of superconductivity by non-magnetic impurities, which is consistent with a possible novel pairing gap with, for example, gap nodes. The second work [2] by the group of Prof. JianLin Luo of the Institute of Physics, Chinese Academy of Sciences, involves NMR studies of the recently discovered superconductor MnP under pressure. Superconductivity was discovered by the same group in MnP under pressure. The chiral magnetic state seems to be essential to the superconductivity in that system. Here, the authors put new efforts into this issue. The third work [3] is by Prof. Hai-Hu Wen's group from Nanjing University. Since the discovery of the superconductor (Li1?xFex)OHFeSe, the question remains as to whether the superconductivity is robust and has a full volume. Clearly, the authors report robust superconductivity and anisotropy of the newly discovered superconductor (Li1?xFex)OHFeSe. Using well-documented data and analysis, they concluded a full volume of superconductivity in this new superconductor. The fourth work [4] is by the group of Prof. ShiYan Li from Fudan University. They use elegant thermal transport measurements at very low temperatures to detect the superconducting gap structure of the new superconductor Ca10(Pt4??As8)((Fe1?xPtx)2As2)5 (Tc=22 K). They find strong evidence of a fully gapped feature, the gap structure of which is common with many other iron-based superconductors.

Finally, the special topic collected one paper [5] by the group of Prof. MingHu Fang from Zhejiang University on the transport properties of the theoretically predicted Weyl semimetal TaP. Weyl semimetal is a very hot topic involving interesting physics. The detailed and careful transport measurements reveal not only the features of a semimetal but also some evidence of the chiral feature of the electrons, such as the huge positive and negative magnetoresistance. This discovery will trigger further studies on the Weyl semimetal state.

####

For more information, please click here

Contacts:
Wang Wei

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

1. Effect of impurity scattering on superconductivity in K2Cr3As3

2. 31P NMR study of magnetic phase transitions of MnP single crystal under 2 GPa pressure

3. Robust superconductivity and transport properties in (Li1-xFex)OHFeSe single crystals

4. Nodeless superconducting gaps in Ca10(Pt4-δAs8)((Fe1-xPtx)2As2)5 probed by quasiparticle heat transport

5. Large unsaturated positive and negative magnetoresistance in Weyl semimetal TaP

Science China Press :

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Superconductivity

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Magnetism/Magnons

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project