Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Unlocking the gates to quantum computing: The quantum Fredkin gate has been experimentally realized for the first time

An artist's rendering of the quantum Fredkin (controlled-SWAP) gate, powered by entanglement, operating on photonic qubits.
CREDIT: Raj Patel and Geoff Pryde, Center for Quantum Dynamics, Griffith University.
An artist's rendering of the quantum Fredkin (controlled-SWAP) gate, powered by entanglement, operating on photonic qubits.

CREDIT: Raj Patel and Geoff Pryde, Center for Quantum Dynamics, Griffith University.

Abstract:
Researchers from Griffith University and the University of Queensland have overcome one of the key challenges to quantum computing by simplifying a complex quantum logic operation. They demonstrated this by experimentally realising a challenging circuit -- the quantum Fredkin gate -- for the first time.

Unlocking the gates to quantum computing: The quantum Fredkin gate has been experimentally realized for the first time

Brisbane, Australia | Posted on March 27th, 2016

"The allure of quantum computers is the unparalleled processing power that they provide compared to current technology," said Dr Raj Patel from Griffith's Centre for Quantum Dynamics.

"Much like our everyday computer, the brains of a quantum computer consist of chains of logic gates, although quantum logic gates harness quantum phenomena."

The main stumbling block to actually creating a quantum computer has been in minimising the number of resources needed to efficiently implement processing circuits.

"Similar to building a huge wall out lots of small bricks, large quantum circuits require very many logic gates to function. However, if larger bricks are used the same wall could be built with far fewer bricks," said Dr Patel.

"We demonstrate in our experiment how one can build larger quantum circuits in a more direct way without using small logic gates."

At present, even small and medium scale quantum computer circuits cannot be produced because of the requirement to integrate so many of these gates into the circuits. One example is the Fredkin (controlled- SWAP) gate. This is a gate where two qubits are swapped depending on the value of the third.

Usually the Fredkin gate requires implementing a circuit of five logic operations. The research team used the quantum entanglement of photons -- particles of light -- to implement the controlled-SWAP operation directly.

"There are quantum computing algorithms, such as Shor's algorithm for factorising prime numbers, that require the controlled-SWAP operation.

The quantum Fredkin gate can also be used to perform a direct comparison of two sets of qubits (quantum bits) to determine whether they are the same or not. This is not only useful in computing but is an essential feature of some secure quantum communication protocols where the goal is to verify that two strings, or digital signatures, are the same," said Professor Tim Ralph from the University of Queensland.

Professor Geoff Pryde, from Griffith's Centre for Quantum Dynamics, is the project's chief investigator.

"What is exciting about our scheme is that it is not limited to just controlling whether qubits are swapped, but can be applied to a variety of different operations opening up ways to control larger circuits efficiently," said Professor Pryde.

"This could unleash applications that have so far been out of reach."

###

The team is part of the Australian Research Council's Centre for Quantum Computation and Communication Technology, an effort to exploit Australia's strong expertise in developing quantum information technologies.

####

For more information, please click here

Contacts:
Helen Wright

047-840-6565

Copyright © Griffith University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The research has been published as A quantum Fredkin gate in Science Advances (DOI:10.1126/sciadv.1501531):

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Chip Technology

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Quantum Computing

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project