Home > Press > Nanotechnology for label-free colorimetric detection of c-myc mRNA oncogene
![]() |
Depicts visual colors of AgNP solutions (0.45 nmol/L) incubated with different PNA12 concentrations (0-1.2 μmol/L) and absorption spectra of corresponding solutions.
©Science China Press |
Abstract:
Given the important role in functioning as oncogenes or tumor suppressors, c-myc mRNA has emerged as a potential biomarker for cancer detection. In particular, abnormal expression of mRNAs is commonly observed at early stages of colon cancer development. Therefore, sensitive detection of c-myc mRNA has become a promising approach to achieving early clinical diagnosis of cancer and paves the way for precision medicine. Recently, a China-U.S. collaborative research team reported a label-free colorimetric protocol based on peptide nucleic acid/silver nanoparticles (PNA/AgNPs) for specific detection of c-myc mRNA biomarkers. A correlated research article entitled "A label-free colorimetric assay for detection of c-myc mRNA based on peptide nucleic acid and silver nanoparticles" was recently published in the journal of Science Bulletin (2016, vol.61, No. 4: 276-281, Springer), written by Dr. Xia Li from Liaocheng University (Shandong, China), Shandong Taishan Scholar Prof. Jifeng Liu (current, Tianjin Science and Technology University) and Prof. Chenzhong Li at the Florida International University (Miami, USA).
PNA has the same hydrogen-bonding nucleobases as DNA, but is attached to an uncharged N-(2-aminoethyl) glycine backbone which confers superior target-binding characteristics and physicochemical robustness over native DNA probes. PNA can induce AgNPs aggregations effectively, which reduces the optical absorbance and leads to a significant color change from yellow to red-brown (Fig.1). Interestingly, the aggregation of AgNPs can be reversibly controlled by the formation of PND-mRNA complexes by adding c-myc mRNA to the complementary PNS probe-containing solution. The reversible dissociation process could be easily observed by monitoring the color change from red-brown to yellow by the naked eye (Fig.2).
The fundamental mechanism of AgNPs-PNA interaction is also investigated at a molecular level. From studying the most probable configurations of PNA structure on AgNPs by molecular modeling, the team found that multiple hydrogen bonds can be formed between PNA on AgNPs, resulting in AgNPs naturally aggregating with one another. Additionally, the reduced electrostatic repulsion has also been considered as another factor causing the PNA-induced AgNPs aggregation. In the presence of target c-myc mRNA, the PNA prefers to switch its configuration to combine with the complementary mRNA target, resulting in disaggregation of AgNPs into dispersed Ag nanoparticles. "This PNA and AgNPs integrated technology is quite simple, specific and sensitive. We are also considering transferring the liquid-based sensing platform to solid bio-sensing devices such as through a paper or silicon-based platform. In addition, we aim to integrate the bar code technology and smart phone to develop a portable oncogene screening biosensor for point-of-care applications", said by Chenzhong Li, professor of Biomedical Engineering at Florida International University, Florida.
###
This work was partially supported by the National Natural Science Foundation of China (21305058, 21205056, 21075058 and 21503104) and Tai-Shan Scholar Research Fund of Shandong Province.
####
For more information, please click here
Contacts:
Chen-zhong Li
Copyright © Science China Press
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
Cancer
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Possible Futures
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Nanomedicine
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Nanobiotechnology
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |