Home > Press > Nanoparticle-based cancer therapies shown to work in humans
The nanoparticle therapeutic CRLX101 (schematic illustration provided by Cerulean Pharma Inc.) was given intravenously to patients with stomach cancer. Biopsies were taken of both the stomach tumor and nearby, healthy tissue. Evidence of the nanoparticle delivered drug (bright green dots) was seen only in the tumors of the nine patients investigated, and not in their adjacent healthy tissue. Credit: Courtesy of the M. E. Davis Laboratory/Caltech |
Abstract:
A team of researchers led by Caltech scientists have shown that nanoparticles can function to target tumors while avoiding adjacent healthy tissue in human cancer patients.
"Our work shows that this specificity, as previously demonstrated in preclinical animal studies, can in fact occur in humans," says study leader Mark E. Davis, the Warren and Katharine Schlinger Professor of Chemical Engineering at Caltech. "The ability to target tumors is one of the primary reasons for using nanoparticles as therapeutics to treat solid tumors."
The findings, published online the week of March 21, 2016 in the journal Proceedings of the National Academy of Sciences, demonstrate that nanoparticle-based therapies can act as a "precision medicine" for targeting tumors while leaving healthy tissue intact.
In the study, Davis and his colleagues examined gastric tumors from nine human patients both before and after infusion with a drug -- camptothecin -- that was chemically bound to nanoparticles about 30 nanometers in size.
"Our nanoparticles are so small that if one were to increase the size to that of a soccer ball, the increase in size would be on the same order as going from a soccer ball to the planet Earth," says Davis, who is also a member of the City of Hope Comprehensive Cancer Center in Duarte, California, where the clinical trial was conducted.
The team found that 24 to 48 hours after the nanoparticles were administered, they had localized in the tumor tissues, released their drug cargo, and the drug had the intended biological effects of inhibiting two proteins that are involved in the progression of the cancer. Equally important, both the nanoparticles and the drug were absent from healthy tissue adjacent to the tumors.
The nanoparticles are designed to be flexible delivery vehicles. "We can attach different drugs to the nanoparticles, and by changing the chemistry of the bond linking the drug to the nanoparticle, we can alter the release rate of the drug to be faster or slower," says Andrew Clark, a graduate student in Davis's lab and the study's first author.
Davis says his team's findings are suggestive that a phenomenon known as the enhanced permeability and retention (EPR) effect is at work in humans. In the EPR effect, abnormal blood vessels that are "leakier" than normal blood vessels in healthy tissue allow nanoparticles to preferentially concentrate in tumors. Until now, the existence of the EPR effect has been conclusively proven only in animal models of human cancers.
"Our results don't prove the EPR effect in humans, but they are completely consistent with it," Davis says.
The findings could also help pave the way toward more effective cancer drug cocktails that can be tailored to fight specific cancers and that leave patients with fewer side effects.
"Right now, if a doctor wants to use multiple drugs to treat a cancer, they often can't do it because the cumulative toxic effects of the drugs would not be tolerated by the patient," Davis says. "With targeted nanoparticles, you have far fewer side effects, so it is anticipated that drug combination can be selected based on the biology and medicine rather than the limitations of the drugs."
In addition to Davis and Clark, other coauthors on the study, entitled "CRLX101 nanoparticles localize in human tumors and not in adjacent, nonneoplastic tissue after intravenous dosing," include Devin Wiley (MS '11, PhD '13) and Jonathan Zuckerman (PhD '12); Paul Webster of the Oak Crest Institute of Science; Joseph Chao and James Lin at City of Hope; and Yun Yen of Taipei Medical University, who was at City of Hope and a visitor in the Davis lab at the initiation of the clinical trial.
The research was supported by grants from the National Cancer Institute and the National Institutes of Health and by Cerulean Pharma Inc. Davis is a consultant to and holds stock in Cerulean Pharma Inc.
####
For more information, please click here
Contacts:
Deborah Williams-Hedges
626-395-3227
Copyright © California Institute of Technology
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Cancer
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||